Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 295(2): 236-42, 2002 Jul 12.
Article in English | MEDLINE | ID: mdl-12150937

ABSTRACT

A possible mechanism(s) behind exercise training-enhanced lipolysis was investigated in rat adipocytes. Exercise training (9 weeks; running) enhanced the activity of cAMP-dependent protein kinase (PKA) and the protein expressions of PKA subunits (catalytic, RII alpha, and RII beta) in P(40) fraction (sedimenting at 40,000g), but not in I(40) fraction (infranatant of 40,000g) of adipocyte homogenate. The expression of PKA-anchoring protein 150 (AKAP150) in P(40) fraction was greater in exercise-trained (TR) than in control (C) rats. Hormone-sensitive lipase (HSL) activities in both fractions were also greater in TR. On the other hand, stimulated lipolysis was accompanied by increased activities of HSL in P(40) but not in I(40) fraction. The decreases in stimulated lipolysis due to St-Ht31 were greater in TR rats. Thus, the mechanisms behind exercise training-enhanced adipocyte lipolysis could involve the increased activities of PKA and HSL with enhanced expressions of AKAP150 and some subunits of PKA, all of which may be compartmentalized within adipocytes.


Subject(s)
Adipocytes/metabolism , Physical Conditioning, Animal , Animals , Enzyme Activation , Lipolysis , Male , Protein Kinase C/metabolism , Rats , Rats, Wistar , Sterol Esterase/metabolism , Subcellular Fractions/enzymology
2.
Jpn J Physiol ; 52(4): 343-52, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12519469

ABSTRACT

A possible role of nitric oxide (NO) on adipocyte lipolysis was studied in exercise-trained (9 weeks of running) rats. Lipolysis in adipose tissue tended to be greater in trained rats than in control rats. A treatment of adipose tissue with 5 mM N(G)-nitro-L-arginine methyl ester (L-NAME) showed that basal and isoproterenol-stimulated lipolysis were both significantly greater in trained rats than in control rats. In contrast, in isolated adipocytes L-NAME had no effect on lipolysis in either group of rats, though the lipolysis of isolated adipocytes was significantly greater in trained rats than in control rats. Training significantly reduced nitrite/nitrate production in adipocytes, but not in tissue. On the other hand, training increased the protein expression of endothelial nitric oxide synthase (eNOS), but not that of inducible NOS (iNOS) in the extracts of tissue homogenates. In tissue homogenates, eNOS activity but not iNOS activity was significantly greater in trained rats than in control rats. In cellular extracts, training significantly reduced the activities of both NOS's, but the mRNA expressions of both NOS's were not different between groups. The NO donors, S-nitroso-N-acetyl-penicillamine (SNAP) and 1-propamine, 3-(2-hydroxy-2-nitroso-1-propyl-hydrazine) (PAPA-NONOate), significantly inhibited adipocyte lipolysis in response to isoproterenol in both groups. This inhibitory effect of SNAP, but not that of PAPA-NONOate, was greater in the adipocytes of trained rats than in those of the control rats. Thus it is possible that NO is involved in the regulation of lipolysis and that exercise training enhances the responsiveness of adipocytes to extracellular NO with the reduced production of nitrite/nitrate in adipocytes because of decreased activities of NOS's. On the other hand, it is also possible that exercise increases either the activity or the protein expression of eNOS in adipose tissue.


Subject(s)
Adipocytes/physiology , Free Radical Scavengers/pharmacology , Lipolysis/physiology , Nitric Oxide/pharmacology , Physical Conditioning, Animal/physiology , Animals , Culture Techniques , Enzyme Inhibitors/pharmacology , Male , NG-Nitroarginine Methyl Ester/pharmacology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...