Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 57(54): 6676-6679, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34132257

ABSTRACT

Enantioselective decarboxylative protonation of tetralone-derived ß-ketocarboxylic acids was achieved with up to 89% enantiomeric excess (ee)-in the presence of a chiral primary amine catalyst. Furthermore, this method was applied to enantioselective deuteration to afford the corresponding α-deuterioketones with up to 88% ee.

2.
Beilstein J Org Chem ; 17: 229-233, 2021.
Article in English | MEDLINE | ID: mdl-33564333

ABSTRACT

Decarboxylative trifluoromethylthiolation of lithium pyridylacetates was achieved using N-(trifluoromethylthio)benzenesulfonimide as the electrophilic trifluoromethylthiolation reagent. The reaction afforded the corresponding trifluoromethyl thioethers in good yield. Furthermore, the preparation of lithium pyridylacetates by saponification of the corresponding methyl esters and subsequent decarboxylative trifluoromethylthiolation were performed in a one-pot fashion.

3.
Molecules ; 25(17)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867091

ABSTRACT

Chiral tertiary α-hydroxyketones were synthesized with high enantiopurity by asymmetric decarboxylative chlorination and subsequent nucleophilic substitution. We recently reported the asymmetric decarboxylative chlorination of ß-ketocarboxylic acids in the presence of a chiral primary amine catalyst to obtain α-chloroketones with high enantiopurity. Here, we found that nucleophilic substitution of the resulting α-chloroketones with tetrabutylammonium hydroxide yielded the corresponding α-hydroxyketones without loss of enantiopurity. The reaction proceeded smoothly even at a tertiary carbon. The proposed method would be useful for the preparation of chiral tertiary alcohols.


Subject(s)
Ketones/chemical synthesis , Alcohols/chemical synthesis , Catalysis , Halogenation , Molecular Structure , Organic Chemistry Phenomena
4.
Molecules ; 24(15)2019 Jul 30.
Article in English | MEDLINE | ID: mdl-31366138

ABSTRACT

Decarboxylative aldol reaction of aliphatic carboxylic acids is a useful method for C-C bond formation because carboxylic acids are an easily available class of compounds. In this study, we found that the decarboxylative aldol reaction of tertiary ß-ketocarboxylic acids and trifluoropyruvates proceeded smoothly to yield the corresponding aldol products in high yields and with high diastereoselectivity in the presence of a tertiary amine catalyst. In this reaction, we efficiently constructed a quaternary carbon center and an adjacent trifluoromethylated carbon center. This protocol was also extended to an enantioselective reaction with a chiral amine catalyst, and the desired product was obtained with up to 73% enantioselectivity.


Subject(s)
Aldehydes/chemistry , Carboxylic Acids/chemistry , Cinchona Alkaloids/chemistry , Pyruvic Acid/analogs & derivatives , Amines/chemistry , Catalysis , Fluorides/chemistry , Molecular Structure , Stereoisomerism
5.
Chemistry ; 25(31): 7453-7456, 2019 Jun 04.
Article in English | MEDLINE | ID: mdl-31026095

ABSTRACT

Syntheses of substituted pyridines and fluorinated compounds, which are often pharmaceutical targets, are important objectives in organic chemistry. Herein, we found that decarboxylative fluorination of lithium 2-pyridylacetates occur under catalyst-free conditions. The phenomenon can be applied to one-pot transformation of substituted methyl 2-pyridylacetate to 2-(fluoroalkyl)pyridine by decarboxylative fluorination of the intermediate lithium 2-pyridylacetate. This method was also applied to the syntheses of 2-(difluoroalkyl)pyridines.

SELECTION OF CITATIONS
SEARCH DETAIL
...