Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Open Forum Infect Dis ; 1(2): ofu061, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25734131

ABSTRACT

BACKGROUND: Enterohemorrhagic Escherichia coli (EHEC) O157:H7 infection causes severe diseases such as bloody diarrhea and hemolytic uremic syndrome (HUS). Although EHEC O157:H7 strains have exhibited high genetic variability, their abilities to cause human diseases have not been fully examined. METHODS: Clade typing and stx subtyping of EHEC O157:H7 strains, which were isolated in Japan during 1999-2011 from 269 HUS patients and 387 asymptomatic carriers (ACs) and showed distinct pulsed-field gel electrophoresis patterns, were performed to determine relationships between specific lineages and clinical presentation. RESULTS: Clades 6 and 8 strains were more frequently found among the isolates from HUS cases than those from ACs (P = .00062 for clade 6, P < .0001 for clade 8). All clade 6 strains isolated from HUS patients harbored stx2a and/or stx2c, whereas all clade 8 strains harbored either stx2a or stx2a/stx2c. However, clade 7 strains were predominantly found among the AC isolates but less frequently found among the HUS isolates, suggesting a significant association between clade 7 and AC (P < .0001). Logistic regression analysis revealed that 0-9 year old age is a significant predictor of the association between clade 8 and HUS. We also found an intact norV gene, which encodes for a nitric oxide reductase that inhibits Shiga toxin activity under anaerobic condition, in all clades 1-3 isolates but not in clades 4-8 isolates. CONCLUSIONS: Early detection of EHEC O157:H7 strains that belonged to clades 6/8 and harbored specific stx subtypes may be important for defining the risk of disease progression in EHEC-infected 0- to 9-year-old children.

3.
Naturwissenschaften ; 89(1): 31-3, 2002 Jan.
Article in English | MEDLINE | ID: mdl-12008970

ABSTRACT

Scavenging activities of melatonin, which is a pineal secretory product and functions in circadian biology, and its related compounds against reactive oxygen species such as superoxide anion radical, hydrogen peroxide, hydroxyl radical and singlet oxygen as well as organic peroxide radical (t-BuOO*) were evaluated chemically by using electron spin resonance-spin trap and chemiluminescence methods. Antioxidative activity of the compounds was estimated by IC50 value (microM), 50% inhibiting concentration of a compound against reactive oxygen species formed in each system, and the second-order rate constants (k2) for the reactions of the compounds and superoxide anion radical or hydroxyl radical. Because melatonin has exhibited the highest scavenging activity against t-BuOO*, the biochemical anti-lipid peroxide radical scavenging activities of melatonin were examined. We found that melatonin exhibits higher anti-lipid peroxidative activity in the rat brain microsomes than in the rat liver microsomal and liposomal systems, suggesting that melatonin may function as a treatment for reactive oxygen species-related diseases of the brain.


Subject(s)
Free Radical Scavengers , Lipid Peroxidation , Melatonin/chemistry , Kinetics , Superoxides , tert-Butylhydroperoxide
SELECTION OF CITATIONS
SEARCH DETAIL
...