Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 22(21): 215201, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21451239

ABSTRACT

This study reports controlled single conductive paths found in resistive random access memory (ReRAM) formed by embedding Pt nanoparticles (Pt NPs) in NiO film. Homogeneous Pt NPs produced and placed by ferritin protein produce electric field convergence which leads to controlled conductive path formation. The ReRAM with Pt NPs shows stable switching behavior. A Pt NP density decrease results in an increase of OFF state resistance and decrease of forming voltage, whereas ON resistance was independent of the Pt NP density, which indicates that a single metal NP in a memory cell will achieve low power and stable operation.


Subject(s)
Ferritins/chemistry , Metal Nanoparticles/chemistry , Nanotechnology/methods , Platinum/chemistry , Electric Impedance , Metal Nanoparticles/ultrastructure
2.
J Biomed Biotechnol ; 2009: 467489, 2009.
Article in English | MEDLINE | ID: mdl-19688110

ABSTRACT

N-acetyl 5-aminosalicylic acid (5-AcASA) that was intracellularly formed from 5-aminosalicylic acid (5-ASA) at 200 microM was discharged 5.3, 7.1, and 8.1-fold higher into the apical site than into the basolateral site during 1, 2, and 4-hour incubations, respectively, in Caco-2 cells grown in Transwells. The addition of flavonols (100 microM) such as fisetin and quercetin with 5-ASA remarkably decreased the apically directed efflux of 5-AcASA. When 5-ASA (200 microM) was added to Caco-2 cells grown in tissue culture dishes, the formation of 5-AcASA decreased, and, in addition, the formed 5-AcASA was found to be accumulated within the cells in the presence of such flavonols. Thus, the decrease in 5-AcASA efflux by such flavonols was attributed not only to the inhibition of N-acetyl-conjugation of 5-ASA but to the predominant cellular accumulation of 5-AcASA. Various flavonoids also had both of the effects with potencies that depend on their specific structures. The essential structure of flavonoids was an absence of a hydroxyl substitution at the C5 position on the A-ring of flavone structure for the inhibitory effect on the N-acetyl-conjugation of 5-ASA, and a presence of hydroxyl substitutions at the C3' or C4' position on the B-ring of flavone structure for the promoting effect on the cellular accumulation of 5-AcASA. Both the decrease in 5-AcASA apical efflux and the increase in 5-AcASA cellular accumulation were also caused by MK571 and indomethacin, inhibitors of MRPs, but not by quinidine, cyclosporin A, P-glycoprotein inhibitors, and mitoxantrone, a BCRP substrate. These results suggest that certain flavonoids suppress the apical efflux of 5-AcASA possibly by inhibiting MRPs pumps located on apical membranes in Caco-2 cells.


Subject(s)
Aminosalicylic Acids/pharmacokinetics , Flavonoids/pharmacology , Biological Transport/drug effects , Caco-2 Cells , Cell Line, Tumor , Culture Media , Drug Interactions , Humans , Mesalamine/pharmacokinetics , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...