Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 121(10): 102701, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30240253

ABSTRACT

The isotope ^{98}Tc decays to ^{98}Ru with a half-life of 4.2×10^{6} yr and could have been present in the early Solar System. In this Letter, we report on the first calculations of the production of ^{98}Tc by neutrino-induced reactions in core-collapse supernovae (the ν process). Our predicted ^{98}Tc abundance at the time of solar system formation is not much lower than the current measured upper limit raising the possibility for its detection in the not too distant future. We show that, if the initial abundance were to be precisely measured, the ^{98}Tc nuclear cosmochronometer could be used to evaluate a much more precise value of the duration time from the last core-collapse supernova to the formation of the solar system. Moreover, a unique and novel feature of the ^{98}Tc ν-process nucleosynthesis is the large contribution (∼20%) from charged current reactions with electron antineutrinos. This means that ^{98}Tc becomes a unique new ν-process probe of the temperature of the electron antineutrinos.

2.
J Pharmacol Sci ; 115(2): 221-9, 2011.
Article in English | MEDLINE | ID: mdl-21282931

ABSTRACT

Peripheral-type benzodiazepine receptor (PBR) and central-type benzodiazepine receptor (CBR) in salivary gland play a role in the inhibitory regulation of salivary secretion in rodents. Diazepam-binding inhibitor (DBI), an endogenous ligand for PBR, produces neurosteroids, which modulate CBR activity. In this study, we investigated the effect of repetitive administration of diazepam (DZP) on salivary secretion and expression of DBI mRNA and peptide. Moreover, mRNA expression of PBR and pituitary adenylate cyclase-activating polypeptide (PACAP), a transcriptional regulator for DBI promoter, was evaluated after repetitive administration of DZP. Repetitive administration, but not single administration, of 0.4 mg/kg DZP caused inhibition of salivary secretion and enhanced expression of DBI, PACAP, and PBR mRNA in rat salivary gland, with an increase in production of DBI peptide. These results suggest that repetitive administration of DZP stimulates DBI production, which may result in an increase in the suppressive effect of DZP on salivary secretion.


Subject(s)
Diazepam Binding Inhibitor/metabolism , Diazepam/pharmacology , Saliva/metabolism , Salivary Glands/drug effects , Salivary Glands/metabolism , Salivation/drug effects , Animals , Carrier Proteins/metabolism , Diazepam/administration & dosage , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Male , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Random Allocation , Rats , Rats, Wistar , Receptors, GABA-A/metabolism
3.
Eur J Pharmacol ; 657(1-3): 20-5, 2011 Apr 25.
Article in English | MEDLINE | ID: mdl-21291883

ABSTRACT

This study investigated the influence of diazepam on the binding characteristics of adrenoceptor, muscarinic and benzodiazepine receptors in rat parotid gland membrane using a radioligand binding assay. At a concentration of >10(-6)M, diazepam competed with [(3)H]dihydroalprenolol for ß-adrenoceptor, but not [(3)H]prazosin for α-adrenoceptor or [(3)H]quinuclidinyl benzilate for muscarinic receptor. Continuous administration of diazepam at doses of 0.4mg/kg/day, i.p. for 7days in rat significantly decreased pilocarpine (4.0mg/kg, i.p.)-induced parotid salivary flow. Diazepam also produced a significant increase in the dissociation constant (Kd) value for [(3)H]dihydroalprenolol binding, but no change in the maximal binding capacity (Bmax) value, and a decrease in the Kd value for [(3)H]diazepam binding to benzodiazepine receptors, but no change in the Kd or Bmax values for [(3)H]prazosin or [(3)H]quinuclidinyl benzilate binding. These results suggest that continuous administration of diazepam modifies affinity for ß-adrenoceptor and benzodiazepine receptor binding sites in parotid gland membrane and that changes in these binding sites may be closely related to diazepam-induced suppression of salivary secretion.


Subject(s)
Diazepam/pharmacology , Parotid Gland/drug effects , Parotid Gland/metabolism , Receptors, Adrenergic/metabolism , Receptors, GABA-A/metabolism , Receptors, Muscarinic/metabolism , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Diazepam/administration & dosage , Male , Parotid Gland/cytology , Rats , Rats, Wistar
4.
J Pharmacol Sci ; 115(2): 221-229, 2011.
Article in English | MEDLINE | ID: mdl-32272540

ABSTRACT

Peripheral-type benzodiazepine receptor (PBR) and central-type benzodiazepine receptor (CBR) in salivary gland play a role in the inhibitory regulation of salivary secretion in rodents. Diazepam-binding inhibitor (DBI), an endogenous ligand for PBR, produces neurosteroids, which modulate CBR activity. In this study, we investigated the effect of repetitive administration of diazepam (DZP) on salivary secretion and expression of DBI mRNA and peptide. Moreover, mRNA expression of PBR and pituitary adenylate cyclase-activating polypeptide (PACAP), a transcriptional regulator for DBI promoter, was evaluated after repetitive administration of DZP. Repetitive administration, but not single administration, of 0.4 mg/kg DZP caused inhibition of salivary secretion and enhanced expression of DBI, PACAP, and PBR mRNA in rat salivary gland, with an increase in production of DBI peptide. These results suggest that repetitive administration of DZP stimulates DBI production, which may result in an increase in the suppressive effect of DZP on salivary secretion.

5.
Phys Rev Lett ; 101(23): 231101, 2008 Dec 05.
Article in English | MEDLINE | ID: mdl-19113537

ABSTRACT

In our calculation of neutron star crust heating we include several key new model features. In earlier work electron capture (EC) only allowed neutron emission from the daughter ground state; here we calculate, in a deformed quasi-random-phase approximation (QRPA) model, EC decay rates to all states in the daughter that are allowed by Gamow-Teller selection rules and energetics. The subsequent branching ratios between the 1n,...,xn channels and the competing gamma decay are calculated in a Hauser-Feshbach model. In our multicomponent plasma model a single (EC, xn) reaction step can produce several neutron-deficient nuclei, each of which can further decay by (EC, xn). Hence, the neutron emission occurs more continuously with increasing depth as compared to that in a one-component plasma model.

SELECTION OF CITATIONS
SEARCH DETAIL
...