Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Metallomics ; 12(11): 1693-1701, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32926024

ABSTRACT

Excessive zinc ion (Zn2+) release is induced in pathological situations and causes neuronal cell death. Previously, we have reported that copper ions (Cu2+) markedly exacerbated Zn2+-induced neuronal cell death by potentiating oxidative stress, the endoplasmic reticulum (ER) stress response, and the activation of the c-Jun amino-terminal kinase (JNK) signaling pathway. In contrast, selenium (Se), an essential trace element, and amino acids containing selenium (such as seleno-l-methionine) have been reported to inhibit stress-induced neuronal cell death and oxidative stress. Thus, we investigated the effect of seleno-l-methionine on Cu2+/Zn2+-induced neuronal cell death in GT1-7 cells. Seleno-l-methionine treatment clearly restored the Cu2+/Zn2+-induced decrease in the viable cell number and attenuated the Cu2+/Zn2+-induced cytotoxicity. Accordingly, the levels of ER stress-related factors (especially, CHOP and GADD34) and of phosphorylated JNK increased upon CuCl2 and ZnCl2 co-treatment, whereas pre-treatment with seleno-l-methionine significantly suppressed these upregulations. Analysis of reactive oxygen species (ROS) as upstream factors of these pathways revealed that Cu2+/Zn2+-induced ROS production was clearly suppressed by seleno-l-methionine treatment. Finally, we found that seleno-l-methionine induced the antioxidative protein, glutathione peroxidase. Taken together, our findings suggest that seleno-l-methionine suppresses Cu2+/Zn2+-induced neuronal cell death and oxidative stress via induction of glutathione peroxidase. Thus, we think that seleno-l-methionine may help prevent refractory neurological diseases.


Subject(s)
Copper/toxicity , Glutathione Peroxidase/biosynthesis , Neurons/enzymology , Neurons/pathology , Selenomethionine/pharmacology , Zinc/toxicity , Animals , Antioxidants/pharmacology , Cell Death/drug effects , Cell Line , Endoplasmic Reticulum Stress/drug effects , Enzyme Induction/drug effects , Glutathione Peroxidase/metabolism , MAP Kinase Signaling System/drug effects , Mice , Neurons/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...