Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 326(Pt A): 116745, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36375438

ABSTRACT

Colloidal phosphorus (Pcoll) in paddy soils can pose a serious threat to the water environment. Biochar amendment not only directly absorb Pcoll to reduce the runoff loss, but also create hotspots for microbial communities which simultaneously affects soil Pcoll. However, despite the crucial role of microorganisms, it remains elusive regarding how biochar and its feedstock types affect the relationships of soil microbial communities and Pcoll in soil matrix (such as at soil aggregate level). To address the knowledge gap, we explored the (in)direct effects of biochar on the soil Pcoll in physically separated fractions including micro- (53-250 µm) and macroaggregates (250-2000 µm). Results showed that straw and manure biochars decreased the soil Pcoll content by 55.2-56.7% in microaggregates and 41.2-48.4% in macroaggregates after 120 days of incubation, compared to the respective control. The fungal communities showed a significantly correlation (0.34, p < 0.05) with Pcoll content in the macroaggregates, whereas the bacterial communities were extremely significantly correlated (0.66, p < 0.001) with Pcoll content in the microaggregates. Furthermore, the partial least squares path model analysis indicated that biochar amendments directly increased Pcoll content (0.76 and 0.61) in micro- and macroaggregates, but the reduced Pcoll content by biochar was mainly derived from indirect effects, such as changed soil biological characteristics carbon (C)/P (-0.69), microbial biomass C (-0.63), microbial biomass P (-0.68), keystone taxa Proteobacteria (-0.63), and Ascomycota (-0.59), particularly for the macroaggregates. This study highlights that to some extent, biochar addition can reduce soil Pcoll content by affecting microbial communities (some keystone taxa), and soil biological characteristics at soil aggregate level.


Subject(s)
Microbiota , Soil , Phosphorus , Soil Microbiology , Charcoal
2.
Funct Plant Biol ; 49(10): 845-860, 2022 09.
Article in English | MEDLINE | ID: mdl-35753342

ABSTRACT

Acid soils limit yields of many important crops including canola (Brassica napus ), Australia's third largest crop. Aluminium (Al3+ ) stress is the main cause of this limitation primarily because the toxic Al3+ present inhibits root growth. Breeding programmes do not target acid-soil tolerance in B. napus because genetic variation and convincing quantitative trait loci have not been reported. We conducted a genome-wide association study (GWAS) using the BnASSYST diversity panel of B. napus genotyped with 35 729 high-quality DArTseq markers. We screened 352 B. napus accessions in hydroponics with and without a toxic concentration of AlCl3 (12µM, pH 4.3) for 12days and measured shoot biomass, root biomass, and root length. By accounting for both population structure and kinship matrices, five significant quantitative trait loci for different measures of resistance were identified using incremental Al3+ resistance indices. Within these quantitative trait locus regions of B. napus , 40 Arabidopsis thaliana gene orthologues were identified, including some previously linked with Al3+ resistance. GWAS analysis indicated that multiple genes are responsible for the natural variation in Al3+ resistance in B. napus . The results provide new genetic resources and markers to enhance that Al3+ resistance of B. napus germplasm via genomic and marker-assisted selection.


Subject(s)
Brassica napus , Brassica napus/genetics , Chromosome Mapping , Genome-Wide Association Study , Plant Breeding , Quantitative Trait Loci/genetics
3.
Plant Physiol ; 187(4): 2279-2295, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34618027

ABSTRACT

Certain soil microorganisms can improve plant growth, and practices that encourage their proliferation around the roots can boost production and reduce reliance on agrochemicals. The beneficial effects of the microbial inoculants currently used in agriculture are inconsistent or short-lived because their persistence in soil and on roots is often poor. A complementary approach could use root exudates to recruit beneficial microbes directly from the soil and encourage inoculant proliferation. However, it is unclear whether the release of common organic metabolites can alter the root microbiome in a consistent manner and if so, how those changes vary throughout the whole root system. In this study, we altered the expression of transporters from the ALUMINUM-ACTIVATED MALATE TRANSPORTER and the MULTIDRUG AND TOXIC COMPOUND EXTRUSION families in rice (Oryza sativa L.) and wheat (Triticum aestivum L.) and tested how the subsequent release of their substrates (simple organic anions, including malate, citrate, and γ-amino butyric acid) from root apices affected the root microbiomes. We demonstrate that these exudate compounds, separately and in combination, significantly altered microbiome composition throughout the root system. However, the root type (seminal or nodal), position along the roots (apex or base), and soil type had a greater influence on microbiome structure than the exudates. These results reveal that the root microbiomes of important cereal species can be manipulated by altering the composition of root exudates, and support ongoing attempts to improve plant production by manipulating the root microbiome.


Subject(s)
Microbiota/physiology , Oryza/metabolism , Plant Exudates/metabolism , Plant Roots/microbiology , Rhizosphere , Soil Microbiology , Triticum/metabolism , Crops, Agricultural/metabolism , Crops, Agricultural/microbiology , Soil/chemistry
4.
Funct Plant Biol ; 48(9): 871-888, 2021 08.
Article in English | MEDLINE | ID: mdl-33934748

ABSTRACT

There is increasing interest in understanding how the microbial communities on roots can be manipulated to improve plant productivity. Root systems are not homogeneous organs but are comprised of different root types of various ages and anatomies that perform different functions. Relatively little is known about how this variation influences the distribution and abundance of microorganisms on roots and in the rhizosphere. Such information is important for understanding how root-microbe interactions might affect root function and prevent diseases. This study tested specific hypotheses related to the spatial variation of bacterial and fungal communities on wheat (Triticum aestivum L.) and rice (Oryza sativa L.) roots grown in contrasting soils. We demonstrate that microbial communities differed significantly between soil type, between host species, between root types, and with position along the root axes. The magnitude of variation between different root types and along individual roots was comparable with the variation detected between different plant species. We discuss the general patterns that emerged in this variation and identify bacterial and fungal taxa that were consistently more abundant on specific regions of the root system. We argue that these patterns should be measured more routinely so that localised root-microbe interactions can be better linked with root system design, plant health and performance.


Subject(s)
Microbiota , Oryza , Plant Roots , Soil Microbiology , Triticum
5.
Methods Mol Biol ; 2232: 123-134, 2021.
Article in English | MEDLINE | ID: mdl-33161544

ABSTRACT

High-throughput sequencing of universal bacterial 16S rRNA gene (16S rDNA) amplicons is a routine method for characterizing bacterial diversity in a range of environments. For eukaryotic host-associated communities, however, plastid and mitochondrial genes are often co-amplified with, and greatly outnumber, bacterial 16S rDNA. This makes it difficult to obtain sufficient numbers of target 16S rDNA sequences to characterize the diversity of endophytic bacterial communities. This chapter describes a method that improves the amplification of bacterial 16S rDNA from plant tissues by using a peptide nucleic acid (PNA) PCR clamp. The PNA clamp selectively binds to a targeted region of the plant genome and inhibits its amplification during PCR. PNA clamps are especially useful for characterizing bacterial communities on plant tissues with lower levels of microbial colonization such as the root tips and leaves.


Subject(s)
DNA, Plant/genetics , Peptide Nucleic Acids/genetics , Plants/genetics , Polymerase Chain Reaction/methods , DNA, Plant/isolation & purification , Microbiota/genetics , Phylogeny , Plants/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods
6.
Plants (Basel) ; 9(6)2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32580337

ABSTRACT

Bacteria use quorum sensing signaling for cell-to-cell communication, which is also important for their interactions with plant hosts. Quorum sensing via N-acyl-homoserine lactones (AHLs) is important for successful symbioses between legumes and nitrogen-fixing rhizobia. Previous studies have shown that plant hosts can recognize and respond to AHLs. Here, we tested whether the response of the model legume Medicago truncatula to AHLs from its symbiont and other bacteria could be modulated by the abundance and composition of plant-associated microbial communities. Temporary antibiotic treatment of the seeds removed the majority of bacterial taxa associated with M. truncatula roots and significantly altered the effect of AHLs on nodule numbers, but lateral root density, biomass, and root length responses were much less affected. The AHL 3-oxo-C14-HSL (homoserine lactone) specifically increased nodule numbers but only after the treatment of seeds with antibiotics. This increase was associated with increased expression of the early nodulation genes RIP1 and ENOD11 at 24 h after infection. A 454 pyrosequencing analysis of the plant-associated bacteria showed that antibiotic treatment had the biggest effect on bacterial community composition. However, we also found distinct effects of 3-oxo-C14-HSL on the abundance of specific bacterial taxa. Our results revealed a complex interaction between plants and their associated microbiome that could modify plant responses to AHLs.

7.
Plant Methods ; 14: 114, 2018.
Article in English | MEDLINE | ID: mdl-30598690

ABSTRACT

BACKGROUND: Plant roots release a variety of organic compounds into the soil which alter the physical, chemical and biological properties of the rhizosphere. Root exudates are technically challenging to measure in soil because roots are difficult to access and exudates can be bound by minerals or consumed by microorganisms. Exudates are easier to measure with hydroponically-grown plants but, even here, simple compounds such as sugars and organic acids can be rapidly assimilated by microorganisms. Sterile hydroponic systems avoid this shortcoming but it is very difficult to maintain sterility for long periods especially for larger crop species. As a consequence, studies often use small model species such as Arabidopsis to measure exudates or use seedlings of crop plants which only have immature roots systems. RESULTS: We developed a simple hydroponic system for cultivating large crop plants in sterile conditions for more than 30 days. Using this system wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) plants were grown in sterile conditions for 30 days by which time they had reached the six-leaf stage and developed mature root systems with seminal, nodal and lateral roots. To demonstrate the utility of this system we characterized the aluminium-activated exudation of malate from the major types of wheat roots for the first time. We found that all root types measured released malate but the amounts were two-fold greater from the seminal and nodal axile roots compared with the lateral roots. Additionally, we showed that this sterile growth system could be used to collect exudates from intact whole root systems of barley. CONCLUSIONS: We developed a simple hydroponic system that enables cereal plants to be grown in sterile conditions for longer periods than previously recorded. Using this system we measured, for the first time, the aluminium-activated efflux of malate from the major types of wheat roots. We showed the system can also be used for collecting exudates from intact root systems of 30-day-old barley plants. This hydroponic system can be modified for various purposes. Importantly it enables the study of exudates from crop species with mature root systems.

8.
PLoS One ; 11(10): e0164533, 2016.
Article in English | MEDLINE | ID: mdl-27727301

ABSTRACT

The rhizosphere microbiome is regulated by plant genotype, root exudates and environment. There is substantial interest in breeding and managing crops that host root microbial communities that increase productivity. The eudicot model species Arabidopsis has been used to investigate these processes, however a model for monocotyledons is also required. We characterized the rhizosphere microbiome and root exudates of Brachypodium distachyon, to develop it as a rhizosphere model for cereal species like wheat. The Brachypodium rhizosphere microbial community was dominated by Burkholderiales. However, these communities were also dependent on how tightly they were bound to roots, the root type they were associated with (nodal or seminal roots), and their location along the roots. Moreover, the functional gene categories detected in microorganisms isolated from around root tips differed from those isolated from bases of roots. The Brachypodium rhizosphere microbiota and root exudate profiles were similar to those reported for wheat rhizospheres, and different to Arabidopsis. The differences in root system development and cell wall chemistry between monocotyledons and eudicots may also influence the microorganism composition of these major plant types. Brachypodium is a promising model for investigating the microbiome of wheat.


Subject(s)
Brachypodium/microbiology , Microbiota , Amino Acids/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Brachypodium/growth & development , Brachypodium/metabolism , Chromatography, High Pressure Liquid , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , DNA, Bacterial/metabolism , DNA, Fungal/genetics , DNA, Fungal/isolation & purification , DNA, Fungal/metabolism , Fungi/genetics , Fungi/isolation & purification , Models, Biological , Plant Roots/metabolism , Plant Roots/microbiology , Rhizosphere , Sequence Analysis, DNA , Soil Microbiology , Triticum/growth & development , Triticum/microbiology
9.
Int J Syst Evol Microbiol ; 61(Pt 7): 1622-1627, 2011 Jul.
Article in English | MEDLINE | ID: mdl-20693358

ABSTRACT

An anaerobic rod-shaped thermophile was isolated from a hydrothermal vent at Suiyo Seamount, Izu-Bonin Arc, western Pacific Ocean, and was named strain MN14(T). The rods were gram-negative-staining, non-motile without flagella, 2-4 µm long and 0.5 µm wide, and divided by binary fission in the mid-exponential phase. The cells were surrounded by a sheath-like structure (toga) and occurred singly or in chains. Spheroids containing multiple cells were observed not only in the stationary phase, as previously observed for species of the order Thermotogales, but also from the early exponential phase. Transmission electron microscopy revealed that the peptidoglycan in rods partly disintegrated in the early growth phases and that the outer membrane of the spheroids was not completely lined with peptidoglycan. These findings suggested that the spheroids were formed from rods by the disintegration of peptidoglycan and subsequent inflation of the outer membrane. The spheroids eventually generated tiny cells in the periplasmic space, indicating a viviparous mode of proliferation in addition to binary fission. Strain MN14(T) grew at 40-75 °C, pH 5.0-8.2 and with 0.25-5.20 % (w/v) NaCl, with optimal growth occurring at 68 °C, pH 6.8 and with 2.5 % NaCl. The shortest doubling time was 24 min, assuming that the strain propagated only by binary fission. Elemental sulfur enhanced growth, but was not essential. Thiosulfate was not an electron acceptor for growth. The strain was a chemo-organotroph that grew on yeast extract as the sole growth substrate. Tryptone and starch supported its growth in the presence of yeast extract. The G+C content of the genomic DNA was 31.7 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that this strain belonged to the genus Thermosipho. No significant DNA-DNA hybridization was observed between the genomic DNA of strain MN14(T) and phylogenetically related species of the genus Thermosipho. Based on this evidence, strain MN14(T) is proposed to represent a novel species, named Thermosipho globiformans sp. nov. The species epithet globiformans reflects the formation of multicellular and reproductive spheroids by the novel strain. The type strain of this species is MN14(T) ( = JCM 15059(T) = DSM 19918(T)).


Subject(s)
Gram-Negative Anaerobic Straight, Curved, and Helical Rods/classification , Phylogeny , Seawater/microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Gram-Negative Anaerobic Straight, Curved, and Helical Rods/genetics , Gram-Negative Anaerobic Straight, Curved, and Helical Rods/isolation & purification , Molecular Sequence Data , Nucleic Acid Hybridization , Pacific Ocean , Peptidoglycan/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
10.
FEMS Microbiol Ecol ; 58(3): 364-72, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17117981

ABSTRACT

The survival and effectiveness of a bioaugmentation strain in its target environment depend not only on physicochemical parameters in the soil but also on the physiological state of the inoculated organism. This study examined the effect of variations in inoculum pretreatment on the survival, metabolic activity (measured as rRNA content) and polycyclic aromatic hydrocarbon (PAH)-catabolic gene expression of Sphingobium yanoikuyae B1 in an aged PAH-contaminated soil. RNA denaturing gradient gel electrophoresis analysis showed stable colonization of PAH-contaminated soil by S. yanoikuyae B1 after four pretreatments (growth in complex or minimal medium, starvation, or acclimation to phenanthrene). By contrast, extractable CFUs decreased with time for all four treatments, and significantly faster for Luria Bertani-grown inocula, suggesting that these cells adhered strongly to soil particles while remaining metabolically active. Pretreatment of the inoculum had a dramatic effect on the expression of genes specific to the PAH-degradation pathway. The highest levels of bphC and xylE expression were seen for inocula that had been precultivated on complex medium, and degradation of PAHs was significantly enhanced in soils treated with these inocula. The results suggest that using complex media instead of minimal media for cultivating bioaugmentation inocula may improve the subsequent efficiency of contaminant biodegradation in the soil.


Subject(s)
Gene Expression Regulation, Bacterial/drug effects , Polycyclic Aromatic Hydrocarbons/pharmacology , Soil Microbiology , Soil Pollutants/pharmacology , Sphingomonadaceae/drug effects , Sphingomonadaceae/metabolism , Biodegradation, Environmental , Molecular Structure , Polycyclic Aromatic Hydrocarbons/metabolism , RNA, Bacterial/biosynthesis , RNA, Bacterial/drug effects , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...