Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Vasc Access ; 21(6): 969-976, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32372685

ABSTRACT

BACKGROUND: Peripheral intravenous catheter placement is frequently unsuccessful at the first attempt. One suggested risk factor is a small vein size, because of the consequences of mechanical forces generated by the needle tip. We developed short bevel needles with a very thin tip and evaluated their puncture performance in two in vitro models. METHODS: Peripheral intravenous catheters with a new needle ground using the lancet method (experimental catheter (L)) or backcut method (experimental catheter (B)) were compared with a conventional peripheral intravenous catheter (Surshield Surflo®) in a penetration force test and a tube puncture test. Penetration forces were measured when peripheral intravenous catheters penetrated a polyethylene sheet. The tube puncture test was used to evaluate whether the peripheral intravenous catheters could puncture a polyvinyl chloride tube at two positions, at the center and at 0.5 mm from the center of the tube. RESULTS: Mean penetration forces at the needle tip produced by experimental catheters (L) (0.05 N) and (B) (0.04 N) were significantly lower than those produced by the conventional catheter (0.09 N) (p < 0.01). At the catheter tip, mean forces produced by experimental catheter (B) and the conventional catheter were 0.16 N and 0.26 N, respectively (p < 0.05). In the tube puncture test, the frequency at which the conventional catheter punctured the center-shifted site on the tube at an angle of 20° and speed of 50 mm/min was low (40%). In contrast, experimental catheters (L) and (B) were 100% successful at puncturing both the center and center-shifted sites at 20°. CONCLUSION: Puncture performance was comparable between the lancet-ground and backcut-ground needles except for penetration forces at the catheter tip. The experimental catheters produced lower penetration forces and induced puncture without target displacement at smaller angles compared with the conventional catheter. Therefore, optimization of the needle can prevent vein deformation and movement, which may increase the first-attempt success rate.


Subject(s)
Catheterization, Peripheral/instrumentation , Needles , Vascular Access Devices , Veins , Antistatic Agents , Catheterization, Peripheral/adverse effects , Equipment Design , Punctures
2.
Appl Environ Microbiol ; 76(15): 5292-6, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20525857

ABSTRACT

Tris(2-chloroethyl) and tris(1,3-dichloro-2-propyl) phosphates are chlorinated persistent flame retardants that have recently emerged as environmental pollutants. Two bacterial strains that can degrade the compounds when they are the sole phosphorus sources have been isolated and identified as members of the sphingomonads. The strains can be useful for the bioremediation of environments contaminated with these compounds.


Subject(s)
Flame Retardants/metabolism , Organophosphates/metabolism , Sphingomonas/classification , Sphingomonas/metabolism , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Environmental Pollutants/metabolism , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Sphingomonas/genetics , Sphingomonas/isolation & purification
3.
J Biosci Bioeng ; 106(1): 27-32, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18691527

ABSTRACT

Chlorinated organophosphate ester (OPE)-degrading enrichment cultures were obtained using tris(2-chloroethyl) phosphate (TCEP) or tris(1,3-dichloro-2-propyl) phosphate (TDCPP) as the sole phosphorus source. In cultures with 46 environmental samples, significant TCEP and TDCPP degradation was observed in 10 and 3 cultures, respectively, and successive subcultivation markedly increased their degradation rates. 67E and 45D stable enrichment cultures obtained with TCEP and TDCPP, respectively, completely degraded 20 muM of the respective compounds within 6 h and also the other, although the degradation rate of TCEP by 45D was relatively slow. We confirmed chloride ion generation on degradation in both cases and the generation of 2-chloroethanol (2-CE) and 1,3-dichloro-2-propanol (1,3-DCP) as metabolites of TCEP and TDCPP, respectively. 67E and 45D also showed dehalogenation ability toward 2-CE and 1,3-DCP, respectively. Addition of inorganic phosphate did not significantly influence their ability to degrade the chlorinated OPEs but markedly increased their dehalogenation ability, which was maximum at 0.2 mM of inorganic phosphate and decreased at a higher concentration. Denaturing gradient gel electrophoresis analysis showed that dominant bacteria in 67E are related to Acidovorax spp. and Sphingomonas spp. and those in 45D are Acidovorax spp., Aquabacterium spp., and Sphingomonas spp. This analysis indicated the relationship of the Sphingomonas- and Acidovorax-related bacteria with the cleavage of the phosphoester bond and dehalogenation, respectively, in both cultures. This is the first report on bacterial enrichment cultures capable of degrading both TCEP and TDCPP.


Subject(s)
Coculture Techniques/methods , Comamonadaceae/physiology , Hydrocarbons, Chlorinated/metabolism , Industrial Waste/prevention & control , Organophosphates/metabolism , Soil Microbiology , Sphingomonas/physiology , Biodegradation, Environmental , Cell Proliferation , Comamonadaceae/cytology , Sphingomonas/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...