Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Breed Sci ; 73(2): 204-211, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37404349

ABSTRACT

Low temperatures after flowering cause seed cracking (SC) in soybean. Previously, we reported that proanthocyanidin accumulation on the dorsal side of the seed coat, controlled by the I locus, may lead to cracked seeds; and that homozygous IcIc alleles at the I locus confer SC tolerance in the line Toiku 248. To discover new genes related to SC tolerance, we evaluated the physical and genetic mechanisms of SC tolerance in the cultivar Toyomizuki (genotype II). Histological and texture analyses of the seed coat revealed that the ability to maintain hardness and flexibility under low temperature, regardless of proanthocyanidin accumulation in the dorsal seed coat, contributes to SC tolerance in Toyomizuki. This indicated that the SC tolerance mechanism differed between Toyomizuki and Toiku 248. A quantitative trait loci (QTL) analysis of recombinant inbred lines revealed a new, stable QTL related to SC tolerance. The relationship between this new QTL, designated as qCS8-2, and SC tolerance was confirmed in residual heterozygous lines. The distance between qCS8-2 and the previously identified QTL qCS8-1, which is likely the Ic allele, was estimated to be 2-3 Mb, so it will be possible to pyramid these regions to develop new cultivars with increased SC tolerance.

2.
Sci Rep ; 11(1): 20922, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34686733

ABSTRACT

Despite the essentiality of Mn in terrestrial plants, its excessive accumulation in plant tissues can cause growth defects, known as Mn toxicity. Mn toxicity can be classified into apoplastic and symplastic types depending on its onset. Symplastic Mn toxicity is hypothesised to be more critical for growth defects. However, details of the relationship between growth defects and symplastic Mn toxicity remain elusive. In this study, we aimed to elucidate the molecular mechanisms underlying symplastic Mn toxicity in rice plants. We found that under excess Mn conditions, CO2 assimilation was inhibited by stomatal closure, and both carbon anabolic and catabolic activities were decreased. In addition to stomatal dysfunction, stomatal and leaf anatomical development were also altered by excess Mn accumulation. Furthermore, indole acetic acid (IAA) concentration was decreased, and auxin-responsive gene expression analyses showed IAA-deficient symptoms in leaves due to excess Mn accumulation. These results suggest that excessive Mn accumulation causes IAA deficiency, and low IAA concentrations suppress plant growth by suppressing stomatal opening and leaf anatomical development for efficient CO2 assimilation in leaves.


Subject(s)
Carbon Dioxide/metabolism , Homeostasis/physiology , Indoleacetic Acids/metabolism , Manganese Poisoning/metabolism , Manganese/metabolism , Oryza/metabolism , Plant Leaves/metabolism , Gene Expression Regulation, Plant/physiology
3.
Breed Sci ; 70(4): 449-455, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32968347

ABSTRACT

In yellow soybeans, inhibition of seed coat pigmentation by RNA silencing of CHS genes is suppressed by low temperature and a viral suppressor, resulting in 'cold-induced seed coat discoloration' and 'seed mottling', respectively. Differences exist in the degree of cold-induced seed coat discoloration among Japanese yellow soybean cultivars; for example, Toyomusume is sensitive, Toyohomare has some tolerance, and Toyoharuka is highly tolerant. In this study, we compared the degree of seed mottling severity due to soybean mosaic virus (SMV) among these three soybean cultivars. Obvious differences were found, with the order of severity as follows: Toyohomare > Toyomusume > Toyoharuka. RNA gel blot analysis indicated that CHS transcript abundance in the seed coat, which was increased by SMV infection, was responsible for the severity of seed mottling. Quantitative reverse transcription PCR analysis revealed why mottling was most severe in SMV-infected Toyohomare: the SMV titer in its seed coat was higher than in the other two infected cultivars. We further suggest that a major gene (Ic) for tolerance to cold-induced seed coat discoloration can relieve the severity of seed mottling in SMV-infected Toyoharuka.

4.
Planta ; 248(2): 369-379, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29737417

ABSTRACT

MAIN CONCLUSION: In soybean, occurrence of, or tolerance to, seed cracking under low temperatures may be related to the presence or absence, respectively, of proanthocyanidin accumulation in the seed coat dorsal region. Soybean seeds sometimes undergo cracking during low temperatures in summer. In this study, we focused on the occurrence and tolerance mechanisms of low-temperature-induced seed cracking in the sensitive yellow soybean cultivar Yukihomare and the tolerant yellow soybean breeding line Toiku 248. Yukihomare exhibited seed cracking when subjected to a 21-day low-temperature treatment from 10 days after flowering. In yellow soybeans, seed coat pigmentation is inhibited, leading to low proanthocyanidin levels in the seed coat. Proanthocyanidins accumulated on the dorsal side of the seed coat in Yukihomare under the 21-day low-temperature treatment. In addition, a straight seed coat split occurred on the dorsal side at the full-sized seed stage, resulting in seed cracking in this cultivar. Conversely, proanthocyanidin accumulation was suppressed throughout the seed coat in low-temperature-treated Toiku 248. We propose the following mechanism of seed cracking: proanthocyanidin accumulation and subsequent lignin deposition under low temperatures affects the physical properties of the seed coat, making it more prone to splitting. Further analyses uncovered differences in the physical properties of the seed coat between Yukihomare and Toiku 248. In particular, seed coat hardness decreased in Yukihomare, but not in Toiku 248, under the low-temperature treatment. Seed coat flexibility was higher in Toiku 248 than in Yukihomare under the low-temperature treatment, suggesting that the seed coat of low-temperature-treated Toiku 248 is more flexible than that of low-temperature-treated Yukihomare. These physical properties of the Toiku 248 seed coat observed under low-temperature conditions may contribute to its seed-cracking tolerance.


Subject(s)
Glycine max/physiology , Lignin/metabolism , Proanthocyanidins/metabolism , Seeds/physiology , Cell Wall/metabolism , Cold Temperature , Pigmentation , Seeds/cytology , Glycine max/cytology
5.
Planta ; 245(3): 659-670, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27995313

ABSTRACT

MAIN CONCLUSION: Defective cracking frequently occurs in buff-pigmented soybean seed coats, where proanthocyanidins accumulate and lignin is deposited, suggesting that proanthocyanidins and/or lignin may change physical properties and lead to defective cracking. In the seed production of many yellow soybean (Glycine max) cultivars, very low percentages of self-pigmented seeds are commonly found. This phenomenon is derived from a recessive mutation of the I gene inhibiting seed coat pigmentation. In Japan, most of these self-pigmented seeds are buff-colored, and frequently show multiple defective cracks in the seed coat. However, it is not known why cracking occurs specifically in buff seed coats. In this study, quantitative analysis was performed between yellow and buff soybean seed coats. Compared with yellow soybeans, in which defective cracking rarely occurs, contents of proanthocyanidins (PAs) and lignin were significantly higher in buff seed coats. Histochemical data of PAs and lignin in the seed coats strongly supported this result. Measurements of the physical properties of seed coats using a texture analyzer showed that a hardness value was significantly decreased in the buff seed coats. These results suggest that PA accumulation and/or lignin deposition may affect the physical properties of buff seed coats and lead to the defective cracking. This work contributes to understanding of the mechanism of defective cracking, which decreases the seed quality of soybean and related legumes.


Subject(s)
Glycine max/metabolism , Lignin/metabolism , Pigmentation , Proanthocyanidins/metabolism , Seeds/metabolism , Cell Wall/metabolism , Desiccation , Seeds/cytology , Glycine max/cytology , Staining and Labeling
6.
J Plant Physiol ; 178: 64-8, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25778411

ABSTRACT

This paper examined the route of water supply into soybean nodules through the new visualization technique of time of flight secondary ion mass spectrometry (Tof-SIMS) cryo system, and obtained circumstantial evidence for the water inflow route. The maximum resolution of the Tof-SIMS imaging used by this study was 1.8 µm (defined as the three pixel step length), which allowed us to detect water movement at the cellular level. Deuterium-labeled water was supplied to soybean plants for 4h and the presence of deuterium in soybean nodules was analyzed by the Tof-SIMS cryo system. Deuterium ions were found only in the endodermis tissue surrounding the central cylinder in soybean nodules. Neither xylem vessels nor phloem complex itself did not indicate any deuterium accumulation. Deuterium-ion counts in the endodermis tissue were not changed by girdling treatment, which restricted water movement through the phloem complex. The results strongly indicated that nodule tissues did not receive water directly from the phloem complex, but received water through root cortex apoplastic pathway from the root axis.


Subject(s)
Glycine max/metabolism , Water/metabolism , Biological Transport , Deuterium/metabolism , Phloem/metabolism , Root Nodules, Plant/metabolism , Spectrometry, Mass, Secondary Ion , Xylem/metabolism
7.
J Exp Bot ; 62(6): 2179-88, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21209027

ABSTRACT

Water movement between cells in a plant body is the basic phenomenon of plant solute transport; however, it has not been well documented due to limitations in observational techniques. This paper reports a visualization technique to observe water movement among plant cells in different tissues using a time of flight-secondary ion mass spectrometry (Tof-SIMS) cryo-system. The specific purpose of this study is to examine the route of water supply from xylem to stem tissues. The maximum resolution of Tof-SIMS imaging was 1.8 µm (defined as the three pixel step length), which allowed detection of water movement at the cellular level. Deuterium-labelled water was found in xylem vessels in the stem 2.5 min after the uptake of labelled water by soybean plants. The water moved from the xylem to the phloem, cambium, and cortex tissues within 30-60 min after water absorption. Deuterium ion counts in the phloem complex were slightly higher than those in the cortex and cambium tissue seen in enlarged images of stem cell tissue during high transpiration. However, deuterium ion counts in the phloem were lower than those in the cambium at night with no evaporative demand. These results indicate that the stem tissues do not receive water directly from the xylem, but rather from the phloem, during high evaporative demand. In contrast, xylem water would be directly supplied to the growing sink during the night without evaporative demand.


Subject(s)
Glycine max/metabolism , Water/metabolism , Xylem/metabolism , Cryopreservation , Spectrometry, Mass, Secondary Ion
8.
Plant J ; 65(1): 15-26, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21175886

ABSTRACT

Transport of dicarboxylates across the chloroplast envelope plays an important role in transferring carbon skeletons to the nitrogen assimilation pathway and exporting reducing equivalent to the cytosol to prevent photo-inhibition (the malate valve). It was previously shown that the Arabidopsis plastidic 2-oxoglutarate/malate transporter (AtpOMT1) and the general dicarboxylate transporter (AtpDCT1) play crucial roles at the interface between carbon and nitrogen metabolism. However, based on the in vitro transport properties of the recombinant transporters, it was hypothesized that AtpOMT1 might play a dual role, also functioning as an oxaloacetate/malate transporter, which is a crucial but currently unidentified component of the chloroplast malate valve. Here, we test this hypothesis using Arabidopsis T-DNA insertional mutants of AtpOMT1. Transport studies revealed a dramatically reduced rate of oxaloacetate uptake into chloroplasts isolated from the knockout plant. CO(2) -dependent O(2) evolution assays showed that cytosolic oxaloacetate is efficiently transported into chloroplasts mainly by AtpOMT1, and supported the absence of additional oxaloacetate transporters. These findings strongly indicate that the high-affinity oxaloacetate transporter in Arabidopsis chloroplasts is AtpOMT1. Further, the knockout plants showed enhanced photo-inhibition under high light due to greater accumulation of reducing equivalents in the stroma, indicating malfunction of the malate valve in the knockout plants. The knockout mutant showed a phenotype consistent with reductions in 2-oxoglutarate transport, glutamine synthetase/glutamate synthase activity, subsequent amino acid biosynthesis and photorespiration. Our results demonstrate that AtpOMT1 acts bi-functionally as an oxaloacetate/malate transporter in the malate valve and as a 2-oxoglutarate/malate transporter mediating carbon/nitrogen metabolism.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Carbon/metabolism , Chloroplasts/metabolism , Dicarboxylic Acid Transporters/metabolism , Malates/metabolism , Nitrogen/metabolism , Arabidopsis/genetics , Chlorophyll/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Reverse Transcriptase Polymerase Chain Reaction
9.
Eur J Protistol ; 46(3): 164-70, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20494561

ABSTRACT

A heterolobosean amoeba strain 6_5F was isolated from an Italian rice field soil. Although 18S rRNA gene sequence analysis demonstrated that the new isolate was closely related to Stachyamoeba sp. ATCC 50324, further molecular analysis and morphological observation showed distinct differences amongst the two. The 5.8S rRNA gene was successfully amplified and sequenced for strain 6_5F but not for strain ATCC 50324. Trophozoites of strain ATCC 50324 transform into flagellate forms in the late stage of incubation before encystment, while strain 6_5F do not show flagellate forms under different conditions of the flagellation test. Light and electron microscopic observation showed the structural difference of cysts of strain 6_5F from strain ATCC 50324 and also from the type strain Stachyamoeba lipophora. The results show that the strain 6_5F is distinct from Stachyamoeba spp. and we propose a new genus and species for this isolate, Vrihiamoeba italica gen. nov., sp. nov.


Subject(s)
Amoeba/classification , Amoeba/isolation & purification , Soil Microbiology , Amoeba/cytology , Amoeba/genetics , Cluster Analysis , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Flagella , Genes, rRNA , Italy , Microscopy , Microscopy, Electron, Transmission , Molecular Sequence Data , Oryza , Phylogeny , RNA, Protozoan/genetics , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 5.8S/genetics , Schizopyrenida/cytology , Schizopyrenida/genetics , Sequence Analysis, DNA
10.
Plant Cell Physiol ; 50(10): 1736-49, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19667101

ABSTRACT

In C(4) plants, mesophyll (M) chloroplasts are randomly distributed along the cell walls, while bundle sheath (BS) chloroplasts are typically located in either a centripetal or centrifugal position. We investigated whether these intracellular positions are affected by environmental stresses. When mature leaves of finger millet (Eleusine coracana) were exposed to extremely high intensity light, most M chloroplasts aggregatively re-distributed to the BS side, whereas the intracellular arrangement of BS chloroplasts was unaffected. Compared with the homologous light-avoidance movement of M chloroplasts in C(3) plants, it requires extremely high light (3,000-4,000 micromol m(-2) s(-1)) and responds more slowly (distinctive movement observed in 1 h). The high light-induced movement of M chloroplasts was also observed in maize (Zea mays), another C(4) species, but with a distinct pattern of redistribution along the sides of anticlinal walls, analogous to C(3) plants. The aggregative movement of M chloroplasts occurred at normal light intensities (250-500 micromol m(-2) s(-1)) in response to environmental stresses, such as drought, salinity and hyperosmosis. Moreover, the re-arrangement of M chloroplasts was observed in field-grown C(4) plants when exposed to mid-day sunlight, but also under midsummer drought conditions. The migration of M chloroplasts was controlled by actin filaments and also induced in a light-dependent fashion upon incubation with ABA, which may be the physiological signal transducer. Together these results suggest that M and BS cells of C(4) plants have different mechanisms controlling intracellular chloroplast positioning, and that the aggregative movement of C(4) M chloroplasts is thought to be a protective response under environmental stress conditions.


Subject(s)
Chloroplasts/radiation effects , Eleusine/cytology , Light , Plant Leaves/ultrastructure , Abscisic Acid/metabolism , Actin Cytoskeleton/metabolism , Eleusine/radiation effects , Plant Leaves/cytology , Stress, Physiological
11.
Plant Cell Physiol ; 50(1): 129-40, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19022806

ABSTRACT

In C(4) plants, bundle sheath (BS) chloroplasts are arranged in the centripetal position or in the centrifugal position, although mesophyll (M) chloroplasts are evenly distributed along cell membranes. To examine the molecular mechanism for the intracellular disposition of these chloroplasts, we observed the distribution of actin filaments in BS and M cells of the C(4) plants finger millet (Eleusine coracana) and maize (Zea mays) using immunofluorescence. Fine actin filaments encircled chloroplasts in both cell types, and an actin network was observed adjacent to plasma membranes. The intracellular disposition of both chloroplasts in finger millet was disrupted by centrifugal force but recovered within 2 h in the dark. Actin filaments remained associated with chloroplasts during recovery. We also examined the effects of inhibitors on the rearrangement of chloroplasts. Inhibitors of actin polymerization, myosin-based activities and cytosolic protein synthesis blocked migration of chloroplasts. In contrast, a microtubule-depolymerizing drug had no effect. These results show that C(4) plants possess a mechanism for keeping chloroplasts in the home position which is dependent on the actomyosin system and cytosolic protein synthesis but not tubulin or light.


Subject(s)
Actomyosin/physiology , Chloroplasts/physiology , Eleusine/cytology , Zea mays/cytology , Actin Cytoskeleton/physiology , Centrifugation , Light , Plant Leaves/cytology
12.
Plant Cell Physiol ; 45(2): 187-200, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14988489

ABSTRACT

In NADP-malic enzyme-type C(4) plants such as maize (Zea mays L.), efficient transport of oxaloacetate and malate across the inner envelope membranes of chloroplasts is indispensable. We isolated four maize cDNAs, ZmpOMT1 and ZmpDCT1 to 3, encoding orthologs of plastidic 2-oxoglutarate/malate and general dicarboxylate transporters, respectively. Their transcript levels were upregulated by light in a cell-specific manner; ZmpOMT1 and ZmpDCT1 were expressed in the mesophyll cell (MC) and ZmpDCT2 and 3 were expressed in the bundle sheath cell (BSC). The recombinant ZmpOMT1 protein expressed in yeast could transport malate and 2-oxoglutarate but not glutamate. By contrast, the recombinant ZmpDCT1 and 2 proteins transported 2-oxoglutarate and glutamate at similar affinities in exchange for malate. The recombinant proteins could also transport oxaloacetate at the same binding sites as those for the dicarboxylates. In particular, ZmpOMT1 transported oxaloacetate at a higher efficiency than malate or 2-oxoglutarate. We also compared the activities of oxaloacetate transport between MC and BSC chloroplasts from maize leaves. The K(m) value for oxaloacetate in MC chloroplasts was one order of magnitude lower than that in BSC chloroplasts, and was close to that determined with the recombinant ZmpOMT1 protein. Southern analysis revealed that maize has a single OMT gene. These findings suggest that ZmpOMT1 participates in the import of oxaloacetate into MC chloroplasts in exchange for stromal malate. In BSC chloroplasts, ZmpDCT2 and/or ZmpDCT3 were expected to import malate that is transported from MC.


Subject(s)
Chloroplasts/metabolism , Dicarboxylic Acid Transporters/metabolism , Membrane Transport Proteins , Plant Proteins/metabolism , Zea mays/metabolism , Amino Acid Sequence/genetics , Base Sequence/genetics , Carrier Proteins/genetics , Carrier Proteins/isolation & purification , Carrier Proteins/metabolism , Chloroplasts/genetics , DNA, Complementary/analysis , DNA, Complementary/genetics , Dicarboxylic Acid Transporters/genetics , Dicarboxylic Acid Transporters/isolation & purification , Energy Metabolism/genetics , Gene Expression Regulation, Plant/genetics , Malates/metabolism , Molecular Sequence Data , Oxaloacetic Acid/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/isolation & purification , Recombinant Fusion Proteins/genetics , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Zea mays/genetics
13.
J Plant Physiol ; 160(11): 1319-27, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14658384

ABSTRACT

We investigated the effects of drought stress on the ultrastructure of chloroplasts in rice plants. After the seedlings were grown in a glasshouse for 1 month, they were treated for drought stress using two methods. One drought treatment was imposed by reducing the water supply to the plants for 1 month. The other was imposed by withholding water for 2 weeks to examine the withering process of leaves by drought stress. The ultrastructural changes of chloroplasts in bundle sheath cells were more prominent than those in mesophyll cells under both drought stress treatments. Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) content in bundle sheath chloroplasts reduced more dramatically than in mesophyll chloroplasts by drought stress. Although a slight swelling of thylakoids was sometimes observed in bundle sheath chloroplasts in moderate stress for 1 month, the thylakoids were less affected by drought stress than chloroplast envelope. These results suggest that chloroplasts in bundle sheath cells were more sensitive to drought stress than those in mesophyll cells and the thylakoids were less damaged by drought stress compared with chloroplast envelope.


Subject(s)
Chloroplasts/physiology , Oryza/growth & development , Plant Leaves/growth & development , Water/pharmacology , Chloroplasts/drug effects , Chloroplasts/ultrastructure , Disasters , Immunohistochemistry , Microscopy, Electron , Oryza/drug effects , Oryza/enzymology , Plant Leaves/drug effects , Plant Leaves/enzymology , Ribulose-Bisphosphate Carboxylase/metabolism , Time Factors
14.
J Plant Physiol ; 160(5): 573-5, 2003 May.
Article in English | MEDLINE | ID: mdl-12806788

ABSTRACT

Ionic and osmotic effects of salinity on the ultrastructure of chloroplasts in salt-treated rice seedlings were investigated. After rice seedlings were grown in hydroponic culture for three weeks, they were treated with NaCl and polyethylene glycol (PEG) 4000 both at a water potential of -1.0 MPa for 3 days. The most notable difference in ultrastructural change between NaCl and PEG treatment was observed in the damage in chloroplast membranes. NaCl induced swelling of thylakoids and caused only a slight destruction of the chloroplast envelope. PEG caused severe destruction of the chloroplast envelope compared with NaCl, however thylakoids did not swell. Our observations suggested that in salt-treated rice plants, the ionic effects induced swelling of thylakoids and the osmotic effects caused the destruction of chloroplast envelope.


Subject(s)
Chloroplasts/drug effects , Chloroplasts/ultrastructure , Oryza/cytology , Oryza/drug effects , Polyethylene Glycols/pharmacology , Seedlings/cytology , Sodium Chloride/pharmacology , Intracellular Membranes/drug effects , Intracellular Membranes/ultrastructure , Oryza/ultrastructure , Seedlings/drug effects , Seedlings/ultrastructure , Thylakoids/drug effects , Thylakoids/ultrastructure
15.
Plant Cell Physiol ; 43(7): 706-17, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12154133

ABSTRACT

We characterized three Arabidopsis genes, AtpOMT1, AtpDCT1 and AtpDCT2, localized on chromosome 5 and homologous to spinach chloroplastic 2-oxoglutarate/malate transporter (OMT) gene. The yeast-expressed recombinant AtpOMT1 protein transported malate and 2-oxoglutarate but not glutamate. By contrast, the recombinant AtpDCT1 protein transported 2-oxoglutarate and glutamate at similar affinities in exchange for malate. These findings suggested that AtpOMT1 is OMT and AtpDCT1 is a general dicarboxylate transporter (DCT). The recombinant proteins could also transport oxaloacetate at the same binding sites for dicarboxylates. In particular, the AtpOMT1 had a K(m) value for oxaloacetate one order of magnitude lower than those for malate and 2-oxoglutarate. Although the transcripts for the three genes were accumulated in all tissues examined, the expression of the genes in leaf tissues was light inducible. The expression of the three genes was also induced by nitrate supplement but the induction was most prominent and transient in AtpOMT1 similar to nitrate reductase gene. These findings lead to a proposition that AtpOMT1 functions as an oxaloacetate transporter in the malate-oxaloacetate shuttle across chloroplast membranes. We identified T-DNA insertional mutants of AtpOMT1 and AtpDCT1. Although the AtpOMT1 mutants could grow normally in normal air, the AtpDCT1 mutants were non-viable under the same conditions. The AtpDCT1 mutants were able to grow under the high CO2 condition to suppress photorespiration. These findings suggested that at least AtpDCT1 is a necessary component for photorespiratory nitrogen recycling.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Carrier Proteins/genetics , Dicarboxylic Acid Transporters/genetics , Methyltransferases , Plastids/metabolism , Amino Acid Sequence , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Biological Transport , Carrier Proteins/metabolism , Chromosome Mapping , Cloning, Molecular , Databases, Factual , Dicarboxylic Acid Transporters/metabolism , Gene Expression Regulation, Plant , Genome, Plant , Kinetics , Malates/metabolism , Mitochondrial Proteins , Molecular Sequence Data , Mutation , Phenotype , Sequence Homology, Amino Acid , Yeasts/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...