Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (208)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38949314

ABSTRACT

Advancing knowledge of gastrointestinal physiology and its diseases critically depends on the development of precise, species-specific in vitro models that faithfully mimic in vivo intestinal tissues. This is particularly vital for investigating host-pathogen interactions in bovines, which are significant reservoirs for pathogens that pose serious public health risks. Traditional 3D organoids offer limited access to the intestinal epithelium's apical surface, a hurdle overcome by the advent of 2D monolayer cultures. These cultures, derived from organoid cells, provide an exposed luminal surface for more accessible study. In this research, a detailed protocol is introduced for creating and sustaining 2D monolayer cultures from cells of bovine small and large intestinal organoids. This method includes protocols for assessing membrane integrity through transepithelial electrical resistance and paracellular permeability alongside immunocytochemistry staining techniques. These protocols lay the groundwork for establishing and characterizing a 2D bovine monolayer culture system, pushing the boundaries of these method applications in biomedical and translational research of public health importance. Employing this innovative approach enables the development of physiologically pertinent in vitro models for exploring both normal and diseased states of cattle intestinal physiology. The implications for biomedical and agricultural advancements are profound, paving the way for more effective treatments for intestinal ailments in cattle, thereby enhancing both animal welfare and food safety.


Subject(s)
Intestine, Small , Organoids , Animals , Cattle , Organoids/cytology , Intestine, Small/cytology , Intestine, Large , Intestinal Mucosa/cytology
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732126

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) is a critical public health concern due to its role in severe gastrointestinal illnesses in humans, including hemorrhagic colitis and the life-threatening hemolytic uremic syndrome. While highly pathogenic to humans, cattle, the main reservoir for EHEC, often remain asymptomatic carriers, complicating efforts to control its spread. Our study introduces a novel method to investigate EHEC using organoid-derived monolayers from adult bovine ileum and rectum. These polarized epithelial monolayers were exposed to EHEC for four hours, allowing us to perform comparative analyses between the ileal and rectal tissues. Our findings mirrored in vivo observations, showing a higher colonization rate in the rectum compared with the ileum (44.0% vs. 16.5%, p < 0.05). Both tissues exhibited an inflammatory response with increased expression levels of TNF-a (p < 0.05) and a more pronounced increase of IL-8 in the rectum (p < 0.01). Additionally, the impact of EHEC on the mucus barrier varied across these gastrointestinal regions. Innovative visualization techniques helped us study the ultrastructure of mucus, revealing a net-like mucin glycoprotein organization. While further cellular differentiation could enhance model accuracy, our research significantly deepens understanding of EHEC pathogenesis in cattle and informs strategies for the preventative measures and therapeutic interventions.


Subject(s)
Enterohemorrhagic Escherichia coli , Ileum , Organoids , Rectum , Animals , Cattle , Ileum/microbiology , Ileum/metabolism , Ileum/ultrastructure , Rectum/microbiology , Enterohemorrhagic Escherichia coli/pathogenicity , Organoids/metabolism , Organoids/microbiology , Mucus/metabolism , Escherichia coli Infections/microbiology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/ultrastructure
3.
Sci Rep ; 14(1): 11479, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769412

ABSTRACT

Salmonella enterica serovar Dublin (S. Dublin) is an important enteric pathogen affecting cattle and poses increasing public health risks. Understanding the pathophysiology and host-pathogen interactions of S. Dublin infection are critical for developing effective control strategies, yet studies are hindered by the lack of physiologically relevant in vitro models. This study aimed to generate a robust ileal monolayer derived from adult bovine organoids, validate its feasibility as an in vitro infection model with S. Dublin, and evaluate the epithelial response to infection. A stable, confluent monolayer with a functional epithelial barrier was established under optimized culture conditions. The model's applicability for studying S. Dublin infection was confirmed by documenting intracellular bacterial invasion and replication, impacts on epithelial integrity, and a specific inflammatory response, providing insights into the pathogen-epithelium interactions. The study underscores the utility of organoid-derived monolayers in advancing our understanding of enteric infections in livestock and highlights implications for therapeutic strategy development and preventive measures, with potential applications extending to both veterinary and human medicine. The established bovine ileal monolayer offers a novel and physiologically relevant in vitro platform for investigating enteric pathogen-host interactions, particularly for pathogens like S. Dublin.


Subject(s)
Host-Pathogen Interactions , Ileum , Organoids , Salmonella Infections, Animal , Animals , Cattle , Organoids/microbiology , Ileum/microbiology , Ileum/pathology , Salmonella Infections, Animal/microbiology , Salmonella enterica/pathogenicity , Salmonella enterica/physiology , Inflammation/microbiology , Inflammation/pathology , Intestinal Mucosa/microbiology , Cattle Diseases/microbiology
4.
Xenobiotica ; : 1-8, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38819399

ABSTRACT

P-glycoprotein (P-gp), a multidrug efflux pump encoded by the ABCB1 (formerly MDR1) gene, plays a crucial role in limiting drug absorption and eliminating toxic compounds in both humans and dogs. However, species-specific differences in P-gp substrates necessitate the development of canine-specific evaluation systems. Canine intestinal organoids derived monolayers offer a promising platform for studying drug transport, yet P-gp-mediated transport in these models remains unexplored.We generated canine colonoid-derived 2D monolayers to investigate ABCB1 gene expression and P-gp function. We employed widely recognised P-gp substrates, Rhodamine 123 and Doxorubicin, in conjunction with the P-gp inhibitor PSC833 at Days 5 and 10 of culture.A significant increase in gene expression of P-gp encoded by the ABCB1 was noted on Day 10 compared to Day 5 of culture. Despite this disparity in gene expression, the transport activity of P-gp, as assessed by the efflux of Rhodamine 123 and Doxorubicin with PSC833 inhibition, did not exhibit significant differences between these two time points. However, the inhibition of P-gp function by PSC833 confirms the presence of functional P-gp in our model.Canine intestinal organoid-derived monolayers provide a valuable tool for investigating P-gp-mediated drug transport. These findings highlight the potential for predicting drug bioavailability and adverse reactions in veterinary medicine, aligning with principles of ethical and sustainable research.

5.
PLoS One ; 19(3): e0301079, 2024.
Article in English | MEDLINE | ID: mdl-38512940

ABSTRACT

Developing precise species-specific in vitro models that closely resemble in vivo intestinal tissues is essential for advancing our understanding of gastrointestinal physiology and associated diseases. This is especially crucial in examining host-pathogen interactions, particularly in bovines, a known reservoir for microbes and pathogens posing substantial public health threats. This research investigated the viability of producing bovine rectal organoids from cryopreserved tissues. We compared two cryopreservation methods with a traditional technique using fresh tissues, evaluating their effectiveness through growth rates, long-term viability, and comprehensive structural, cellular, and genetic analyses. These assessments utilized phase-contrast imaging, immunofluorescence imaging, and RT-qPCR assays. Additionally, the study developed a sophisticated method for forming a functional epithelial barrier from organoid-derived bovine rectal monolayers, incorporating a wide range of epithelial cells. This methodology employed transepithelial electrical resistance (TEER), parallel artificial membrane permeability assay (Papp), confocal microscopy, and advanced imaging techniques like scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Our findings decisively show that bovine rectal organoids can be effectively generated from cryopreserved biopsy tissues. Moreover, we formulated a robust and optimized protocol for creating functional rectal monolayers from these organoids. This significant progress is particularly relevant given the susceptibility of the bovine rectum to various enteric pathogens of public health concern, marking a vital step forward in veterinary and biomedical research. The creation of accurate species specific in vitro models that faithfully mimic in vivo intestinal tissues is critical for enhancing our understanding of gut physiology and related pathologies. This is particularly relevant in studying the interactions between hosts and microbes or pathogens with significant public health risks where bovine can be the major reservoir.


Subject(s)
Cryopreservation , Rectum , Animals , Cattle , Epithelial Cells , Biopsy , Organoids/physiology , Intestinal Mucosa
6.
Article in English | MEDLINE | ID: mdl-38873240

ABSTRACT

Recent progress in bovine intestinal organoid research has expanded opportunities for creating improved in vitro models to study intestinal physiology and pathology. However, the establishment of a culture condition capable of generating organoids from all segments of the cattle intestine has remained elusive. Although previous research has described the development of bovine jejunal, ileal, and colonic organoids, this study marks the first report of successful bovine duodenal and rectal organoid development. Maintenance of these organoids through serial passages and cryopreservation was achieved, with higher success rates observed in large intestinal organoids compared to their small intestinal counterparts. A novel approach involving the use of biopsy forceps during initial tissue sampling streamlined the subsequent tissue processing, simplifying the procedure compared to previously established protocols in cattle. Additionally, our study introduced a more cost-effective culture medium based on Advanced DMEM/F12, diverging from frequently used commercially available organoid culture media. This enhancement improves accessibility to organoid technology by reducing culture costs. Crucially, the derived organoids from jejunum, ileum, colon and rectum faithfully preserved the structural, cellular, and genetic characteristics of in vivo intestinal tissue. This research underscores the significant potential of adult bovine intestinal organoids as a physiologically and morphologically relevant in vitro model. Such organoids provide a renewable and sustainable resource for a broad spectrum of studies, encompassing investigations into normal intestinal physiology in cattle and the intricate host-pathogen interactions of clinically and economically significant enteric pathogens.

7.
Front Med Technol ; 4: 895379, 2022.
Article in English | MEDLINE | ID: mdl-35647577

ABSTRACT

Animal organoid models derived from farm and companion animals have great potential to contribute to human health as a One Health initiative, which recognize a close inter-relationship among humans, animals and their shared environment and adopt multi-and trans-disciplinary approaches to optimize health outcomes. With recent advances in organoid technology, studies on farm and companion animal organoids have gained more attention in various fields including veterinary medicine, translational medicine and biomedical research. Not only is this because three-dimensional organoids possess unique characteristics from traditional two-dimensional cell cultures including their self-organizing and self-renewing properties and high structural and functional similarities to the originating tissue, but also because relative to conventional genetically modified or artificially induced murine models, companion animal organoids can provide an excellent model for spontaneously occurring diseases which resemble human diseases. These features of companion animal organoids offer a paradigm-shifting approach in biomedical research and improve translatability of in vitro studies to subsequent in vivo studies with spontaneously diseased animals while reducing the use of conventional animal models prior to human clinical trials. Farm animal organoids also could play an important role in investigations of the pathophysiology of zoonotic and reproductive diseases by contributing to public health and improving agricultural production. Here, we discuss a brief history of organoids and the most recent updates on farm and companion animal organoids, followed by discussion on their potential in public health, food security, and comparative medicine as One Health initiatives. We highlight recent evolution in the culturing of organoids and their integration with organ-on-a-chip systems to overcome current limitations in in vitro studies. We envision multidisciplinary work integrating organoid culture and organ-on-a-chip technology can contribute to improving both human and animal health.

8.
J Vet Med Sci ; 83(8): 1256-1262, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34162774

ABSTRACT

Keratometry was performed in 73 domestic cats of varied signalment in Japan using an automated handheld keratometer. The mean corneal curvature radius was significantly lower for cats younger than 1 year than for those older than 2 years (8.04 mm vs. 8.80-8.99 mm, P<0.01). The radius was significantly greater in males than in females among the cats older than 11 years (9.22 mm vs. 8.84 mm, P=0.01), while the age distributions of the males and females were similar. Corneal astigmatism did not significantly differ across the gender and age groups. The predictability of the corneal curvature and astigmatism was approximately 41-43% and less than 3%, respectively, as a function of age and bodyweight. The results highlighted some age- and sex-related keratometric variations in domestic cats in Japan.


Subject(s)
Astigmatism , Cat Diseases , Animals , Astigmatism/veterinary , Cats , Cornea , Cross-Sectional Studies , Female , Japan/epidemiology , Male
9.
Vet Rec ; 186(15): e4, 2020 May 02.
Article in English | MEDLINE | ID: mdl-32123011

ABSTRACT

BACKGROUND: Keratometry is clinically important and is routinely performed as part of human ophthalmic examination. In veterinary ophthalmology, little is known about keratometry in dogs, and its practical application has been limited. The present study aimed to describe keratometry in some dog breeds popular in Japan using a handheld keratometer. METHODS: Client-owned dogs of various signalment were enrolled prospectively in the keratometry examination. Interbreed variations in mean corneal curvatures (R1R2avg) and corneal astigmatism (Δ(R1-R2)) were evaluated statistically with respect to their bodyweight based on the data which fulfilled the predetermined inclusion criteria. P<0.05 was considered statistically significant. RESULTS: On examination of 237 dogs from 16 different breeds, R1R2avg (mean±sd) ranged from 7.54±0.30 mm in Pomeranians to 9.28±0.19 mm in golden retrievers. Δ(R1-R2) (mean±sd) ranged from 0.22±0.11 mm in miniature schnauzers to 0.57±0.30 mm in French bulldogs. CONCLUSION: The present study successfully described keratometry in 16 dog breeds. The study revealed considerable interbreed variations in both R1R2avg and Δ(R1-R2), which did not necessarily correlate with bodyweight. These results are useful both clinically in fitting contact lenses in the management of corneal diseases and non-clinically in optometric studies in dogs.


Subject(s)
Astigmatism/veterinary , Corneal Topography/veterinary , Dog Diseases/diagnosis , Animals , Astigmatism/diagnosis , Corneal Topography/instrumentation , Dogs , Equipment Design , Female , Japan , Male , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...