Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 5857, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712686

ABSTRACT

Epithelial cells organize an ordered array of non-centrosomal microtubules, the minus ends of which are regulated by CAMSAP3. The role of these microtubules in epithelial functions, however, is poorly understood. Here, we show that the kidneys of mice in which Camsap3 is mutated develop cysts at the proximal convoluted tubules (PCTs). PCTs were severely dilated in the mutant kidneys, and they also exhibited enhanced cell proliferation. In these PCTs, epithelial cells became flattened along with perturbation of microtubule arrays as well as of certain subcellular structures such as interdigitating basal processes. Furthermore, YAP and PIEZO1, which are known as mechanosensitive regulators for cell shaping and proliferation, were activated in these mutant PCT cells. These observations suggest that CAMSAP3-mediated microtubule networks are important for maintaining the proper mechanical properties of PCT cells, and its loss triggers cell deformation and proliferation via activation of mechanosensors, resulting in the dilation of PCTs.


Subject(s)
Cysts/pathology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Animals , Cell Proliferation , Cysts/physiopathology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial Cells/ultrastructure , Ion Channels/metabolism , Kidney Tubules, Proximal/physiopathology , Kidney Tubules, Proximal/ultrastructure , Mice, Knockout , Mice, Mutant Strains , Myosins/metabolism , YAP-Signaling Proteins/metabolism
2.
Development ; 148(3)2021 02 05.
Article in English | MEDLINE | ID: mdl-33462112

ABSTRACT

Microtubules (MTs) regulate numerous cellular processes, but their roles in brain morphogenesis are not well known. Here, we show that CAMSAP3, a non-centrosomal microtubule regulator, is important for shaping the lateral ventricles. In differentiating ependymal cells, CAMSAP3 became concentrated at the apical domains, serving to generate MT networks at these sites. Camsap3-mutated mice showed abnormally narrow lateral ventricles, in which excessive stenosis or fusion was induced, leading to a decrease of neural stem cells at the ventricular and subventricular zones. This defect was ascribed at least in part to a failure of neocortical ependymal cells to broaden their apical domain, a process necessary for expanding the ventricular cavities. mTORC1 was required for ependymal cell growth but its activity was downregulated in mutant cells. Lysosomes, which mediate mTORC1 activation, tended to be reduced at the apical regions of the mutant cells, along with disorganized apical MT networks at the corresponding sites. These findings suggest that CAMSAP3 supports mTORC1 signaling required for ependymal cell growth via MT network regulation, and, in turn, shaping of the lateral ventricles.


Subject(s)
Brain/metabolism , Cell Cycle , Ependyma/growth & development , Lateral Ventricles/growth & development , Mechanistic Target of Rapamycin Complex 1/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Animals , Brain/growth & development , Ependyma/metabolism , Epithelial Cells/cytology , Female , Lysosomes , Male , Mice , Mice, Inbred C57BL , Microtubules/metabolism , Neuroglia/metabolism
3.
Regen Ther ; 12: 55-65, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31890767

ABSTRACT

INTRODUCTION: The basement membrane (BM) is a sheet-like extracellular matrix (ECM) lining the basal side of epithelial and endothelial cells. The molecular composition of the BM diversifies as embryonic development proceeds, providing optimized microenvironments for individual cell types. In post-implantation stage embryos, the embryonic BMs are essential for differentiation of the epiblast, a layer of multipotent embryonic stem cells, and subsequent embryogenesis. To better understand the role of BMs and cell-BM interactions in early embryogenesis, it is imperative to accumulate information on the molecular entities of the embryonic BMs. METHODS: We analyzed the expressions and localizations of 20 major BM proteins (11 laminin subunits, 6 type IV collagen subunits, nidogen-1 and -2, and perlecan) and other ECM-related proteins such as fibronectin and integrins in post-implantation stage embryos by immunohistochemistry. RESULTS: We found that a set of BM proteins, laminin α5, ß1, and γ1 (comprising laminin-511), type IV collagen α1 and α2 (yielding type IV collagen α12α2 [IV]), nidogen-1 and -2, and perlecan, were consistently present in the epiblast/ectoderm BMs throughout the early post-implantation stages. In contrast, laminin α1 was detected in the epiblast BM at E5.5 but decreased in later stages, suggesting that laminin-511 is a major laminin isoform in the early embryonic BM. In addition, fibronectin, a mesenchymal ECM protein, was enriched in the endoderm BM, indicating that the BM compositions differ between the ectoderm and the endoderm. Consistent with these observations, integrin α5, a high-affinity receptor for fibronectin, was localized in the endoderm, while integrin α6, a receptor for laminin-511, was localized in the ectoderm. CONCLUSIONS: The embryonic BMs underlying the epiblast/ectoderm contain a common toolkit comprising laminin-511, type IV collagen (α12α2 [IV]), nidogen-1 and -2, and perlecan, providing a physiological basis for the utility of laminin-511 as a culture substrate for pluripotent stem cells. The distinctive association of laminin-511 and fibronectin with endodermal and ectodermal cells, together with the differential expression of integrin α5 and α6 in these cells, suggests that the ectodermal and endodermal cells rely on their integrin-dependent interactions with laminin-511 and fibronectin, respectively, to ensure their fate specification in embryonic development.

4.
Proc Natl Acad Sci U S A ; 113(2): 332-7, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26715742

ABSTRACT

Polarized epithelial cells exhibit a characteristic array of microtubules that are oriented along the apicobasal axis of the cells. The minus-ends of these microtubules face apically, and the plus-ends face toward the basal side. The mechanisms underlying this epithelial-specific microtubule assembly remain unresolved, however. Here, using mouse intestinal cells and human Caco-2 cells, we show that the microtubule minus-end binding protein CAMSAP3 (calmodulin-regulated-spectrin-associated protein 3) plays a pivotal role in orienting the apical-to-basal polarity of microtubules in epithelial cells. In these cells, CAMSAP3 accumulated at the apical cortices, and tethered the longitudinal microtubules to these sites. Camsap3 mutation or depletion resulted in a random orientation of these microtubules; concomitantly, the stereotypic positioning of the nucleus and Golgi apparatus was perturbed. In contrast, the integrity of the plasma membrane was hardly affected, although its structural stability was decreased. Further analysis revealed that the CC1 domain of CAMSAP3 is crucial for its apical localization, and that forced mislocalization of CAMSAP3 disturbs the epithelial architecture. These findings demonstrate that apically localized CAMSAP3 determines the proper orientation of microtubules, and in turn that of organelles, in mature mammalian epithelial cells.


Subject(s)
Cell Polarity , Epithelial Cells/cytology , Epithelial Cells/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Organelles/metabolism , Amino Acid Sequence , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Caco-2 Cells , Enterocytes/cytology , Enterocytes/metabolism , Enterocytes/ultrastructure , Epithelial Cells/ultrastructure , Green Fluorescent Proteins/metabolism , Homozygote , Humans , Mice, Inbred C57BL , Mice, Mutant Strains , Microtubule-Associated Proteins/chemistry , Models, Biological , Molecular Sequence Data , Mutation/genetics , Nocodazole/pharmacology , Protein Structure, Tertiary , Subcellular Fractions/metabolism , Thiazolidines/pharmacology
5.
Nat Commun ; 3: 1236, 2012.
Article in English | MEDLINE | ID: mdl-23212365

ABSTRACT

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have the potential to provide an infinite source of tissues for regenerative medicine. Although defined xeno-free media have been developed, culture conditions for reliable propagation of hESCs still require considerable improvement. Here we show that recombinant E8 fragments of laminin isoforms (LM-E8s), which are the minimum fragments conferring integrin-binding activity, promote greater adhesion of hESCs and hiPSCs than do Matrigel and intact laminin isoforms. Furthermore, LM-E8s sustain long-term self-renewal of hESCs and hiPSCs in defined xeno-free media with dissociated cell passaging. We successfully maintained three hESC and two hiPSC lines on LM-E8s in three defined media for 10 passages. hESCs maintained high level expression of pluripotency markers, had a normal karyotype after 30 passages and could differentiate into all three germ layers. This culture system allows robust proliferation of hESCs and hiPSCs for therapeutic applications.


Subject(s)
Cell Adhesion/physiology , Laminin/physiology , Pluripotent Stem Cells/physiology , Cell Proliferation , Culture Media , Flow Cytometry , Humans , Karyotyping , Protein Isoforms , Recombinant Proteins
6.
J Biol Chem ; 287(46): 39041-9, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-23019340

ABSTRACT

Vitronectin (VN) is an extracellular matrix protein abundantly present in blood and a wide variety of tissues and plays important roles in a number of biological phenomena mainly through its binding to αV integrins. However, its definite function in the brain remains largely unknown. Here we report the identification of telencephalin (TLCN/ICAM-5) as a novel VN receptor on neuronal dendrites. VN strongly binds to TLCN, a unique neuronal member of the ICAM family, which is specifically expressed on dendrites of spiny neurons in the mammalian telencephalon. VN-coated microbeads induce the formation of phagocytic cup-like plasma membrane protrusions on dendrites of cultured hippocampal neurons and trigger the activation of TLCN-dependent intracellular signaling cascade including the phosphorylation of ezrin/radixin/moesin actin-binding proteins and recruitment of F-actin and phosphatidylinositol 4,5-bisphosphate for morphological transformation of the dendritic protrusions. These results suggest that the extracellular matrix molecule VN and its neuronal receptor TLCN play a pivotal role in the phosphorylation of ezrin/radixin/moesin proteins and the formation of phagocytic cup-like structures on neuronal dendrites.


Subject(s)
Cytoskeletal Proteins/chemistry , Gene Expression Regulation , Membrane Glycoproteins/chemistry , Membrane Proteins/chemistry , Microfilament Proteins/chemistry , Nerve Tissue Proteins/chemistry , Neurons/metabolism , Vitronectin/physiology , Animals , Cell Adhesion , Dendrites/physiology , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Biological , Nerve Tissue Proteins/metabolism , Phagocytosis , Phosphorylation , Protein Binding , Vitronectin/chemistry
7.
Biochem Biophys Res Commun ; 375(1): 27-32, 2008 Oct 10.
Article in English | MEDLINE | ID: mdl-18675790

ABSTRACT

Human embryonic stem cells (hESCs) are thought to be a promising cell source for cell transplantation therapy. For such a clinical application, the hESCs should be manipulated using appropriate and qualified materials. In this study, we examined the efficacy of recombinant human laminin (rhLM) isoforms on the undifferentiated growth of hESCs. We first determined the major integrins expressed on the hESCs to reveal the preference of the hESCs for rhLMs, and found that the hESCs mainly expressed integrin alpha6beta1, which binds predominantly to laminin-111, -332 and -511/-521. When the hESCs were seeded onto rhLMs, the cells indeed adhered markedly to rhLM-332, and to rhLM-511 and rhLM-111 to a lesser extent. The hESCs proliferated on these three rhLMs for several passages while preserving their pluripotency. These results show that rhLM-111, -332, and -511 are good substrates to expand undifferentiated hESCs due to their high affinity to integrin alpha6beta1 expressed on hESCs.


Subject(s)
Cell Culture Techniques , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Laminin/pharmacology , Recombinant Proteins/pharmacology , Cell Differentiation , Cells, Cultured , Embryonic Stem Cells/metabolism , Humans , Integrin alpha6beta1/biosynthesis , Protein Isoforms/pharmacology
8.
J Neurosci ; 27(33): 8866-76, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17699668

ABSTRACT

Dendritic filopodia are long, thin, actin-rich, and dynamic protrusions that are thought to play a critical role as a precursor of spines during neural development. We reported previously that a telencephalon-specific cell adhesion molecule, telencephalin (TLCN) [intercellular adhesion molecule-5 (ICAM-5)], is highly expressed in dendritic filopodia, facilitates the filopodia formation, and slows spine maturation. Here we demonstrate that TLCN cytoplasmic region binds ERM (ezrin/radixin/moesin) family proteins that link membrane proteins to actin cytoskeleton. In cultured hippocampal neurons, phosphorylated active forms of ERM proteins are colocalized with TLCN in dendritic filopodia, whereas alpha-actinin, another binding partner of TLCN, is colocalized with TLCN at surface membranes of soma and dendritic shafts. Expression of constitutively active ezrin induces dendritic filopodia formation, whereas small interference RNA-mediated knockdown of ERM proteins decreases filopodia density and accelerates spine maturation. These results indicate the important role of TLCN-ERM interaction in the formation of dendritic filopodia, which leads to subsequent synaptogenesis and establishment of functional neural circuitry in the developing brain.


Subject(s)
DNA-Binding Proteins/metabolism , Dendrites/ultrastructure , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/cytology , Pseudopodia/physiology , Transcription Factors/metabolism , Actins/metabolism , Animals , Cells, Cultured , Cytoskeletal Proteins/metabolism , DNA-Binding Proteins/genetics , Diagnostic Imaging/methods , Embryo, Mammalian , Hippocampus/cytology , Immunoprecipitation/methods , Membrane Glycoproteins/genetics , Mice , Models, Biological , Mutation/physiology , Nerve Tissue Proteins/genetics , Protein Binding , Surface Plasmon Resonance/methods , Transcription Factors/genetics , Transfection/methods , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...