Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38397020

ABSTRACT

Anserine, an imidazole dipeptide, is present in the muscles of birds and fish and has various bioactivities, such as anti-inflammatory and anti-fatigue effects. However, the effect of anserine on the development of heart failure remains unknown. We cultured primary cardiomyocytes with 0.03 mM to 10 mM anserine and stimulated them with phenylephrine for 48 h. Anserine significantly suppressed the phenylephrine-induced increases in cardiomyocyte hypertrophy, ANF and BNP mRNA levels, and histone H3K9 acetylation. An in vitro histone acetyltransferase (HAT) assay showed that anserine directly suppressed p300-HAT activity with an IC50 of 1.87 mM. Subsequently, 8-week-old male C57BL/6J mice were subjected to transverse aortic constriction (TAC) and were randomly assigned to receive daily oral treatment with anserine-containing material, Marine Active® (60 or 200 mg/kg anserine) or vehicle for 8 weeks. Echocardiography revealed that anserine 200 mg/kg significantly prevented the TAC-induced increase in left ventricular posterior wall thickness and the decrease in left ventricular fractional shortening. Moreover, anserine significantly suppressed the TAC-induced acetylation of histone H3K9. These results indicate that anserine suppresses TAC-induced systolic dysfunction, at least in part, by inhibiting p300-HAT activity. Anserine may be used as a pharmacological agent for human heart failure therapy.


Subject(s)
Anserine , Cardiomyopathies , Heart Failure , Myocytes, Cardiac , p300-CBP Transcription Factors , Animals , Humans , Male , Mice , Acetylation , Anserine/pharmacology , Cardiomegaly/genetics , Cardiomyopathies/metabolism , Enzyme Inhibitors/pharmacology , Heart Failure/metabolism , Histones/metabolism , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Phenylephrine/pharmacology , p300-CBP Transcription Factors/antagonists & inhibitors
2.
Nutrients ; 15(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37432400

ABSTRACT

Hypertrophic stress-induced cardiac remodeling is a compensatory mechanism associated with cardiomyocyte hypertrophy and cardiac fibrosis. Continuation of this response eventually leads to heart failure. The histone acetyltransferase p300 plays an important role in the development of heart failure, and may be a target for heart failure therapy. The phenolic phytochemical 6-shogaol, a pungent component of raw ginger, has various bioactive effects; however, its effect on cardiovascular diseases has not been investigated. One micromolar of 6-shogaol suppressed phenylephrine (PE)-induced increases in cardiomyocyte hypertrophy in rat primary cultured cardiomyocytes. In rat primary cultured cardiac fibroblasts, 6-shogaol suppressed transforming growth factor-beta (TGF-ß)-induced increases in L-proline incorporation. It also blocked PE- and TGF-ß-induced increases in histone H3K9 acetylation in the same cells and in vitro. An in vitro p300-HAT assay revealed that 6-shogaol suppressed histone acetylation. The mice underwent transverse aortic constriction (TAC) surgery, and were administered 0.2 or 1 mg/kg of 6-shogaol daily for 8 weeks. 6-shogaol prevented TAC-induced systolic dysfunction and cardiac hypertrophy in a dose-dependent manner. Furthermore, it also significantly inhibited TAC-induced increases in histone H3K9 acetylation. These results suggest that 6-shogaol may ameliorate heart failure through a variety of mechanisms, including the inhibition of p300-HAT activity.


Subject(s)
Aortic Valve Stenosis , Heart Failure , Zingiber officinale , Animals , Mice , Rats , Acetylation , Histones , Heart Failure/drug therapy , Heart Failure/etiology , Anti-Arrhythmia Agents , Cardiotonic Agents , Diuretics , Glycosides
3.
J Agric Food Chem ; 71(26): 10028-10036, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37347985

ABSTRACT

Although nobiletin (Nob) is a promising functional food component in view of its multifaceted physiological activity, the metabolism of this flavonoid remains underexplored. Herein, we examine the pharmacokinetics and tissue distribution of orally ingested Nob in rats, focusing on the six monodemethylnobiletin (MDNob) isomers as the main Nob metabolites. Two of these metabolites, namely, 6-MDNob and 8-MDNob, are chemically prepared for the first time, and a method for the simultaneous determination of all six MDNobs is developed. The obtained results demonstrate the production of 8-MDNob as a novel Nob metabolite and confirm the previously reported generation of 6-MDNob and 7-MDNob as oral metabolites of Nob in vivo. Finally, a quantitative relationship is established between the amount of metabolically generated MDNobs and that of administered Nob. Thus, this work paves the way for the broad applications and safe usage of Nob.


Subject(s)
Flavones , Rats , Animals , Flavonoids
4.
Phytomedicine ; 107: 154457, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36223697

ABSTRACT

BACKGROUND: Auraptene derived from the peel of Citrus hassaku possesses anti-tumor, anti-inflammatory, and neuroprotective activities. Thus, it could be a valuable pharmacological alternative to treat some diseases. However, the therapeutic value of auraptene for heart failure (HF) is unknown. STUDY DESIGN/METHODS: In cultured cardiomyocytes from neonatal rats, the effect of auraptene on phenylephrine-induced hypertrophic responses and peroxisome proliferator-activated receptor-alpha (PPARα)-dependent gene transcriptions. To investigate whether auraptene prevents the development of heart failure after myocardial infarction (MI) in vivo, Sprague-Dawley rats with moderate MI (fractional shortening < 40%) were randomly assigned for treatment with low- or high-dose auraptene (5 or 50 mg/kg/day, respectively) or vehicle for 6 weeks. The effects of auraptene were evaluated by echocardiography, histological analysis, and the measurement of mRNA levels of hypertrophy, fibrosis, and PPARα-associated genes. RESULTS: In cultured cardiomyocytes, auraptene repressed phenylephrine-induced hypertrophic responses, such as increases in cell size and activities of atrial natriuretic factor and endothelin-1 promoters. Auraptene induced PPARα-dependent gene activation by enhancing cardiomyocyte peroxisome proliferator-responsive element reporter activity. The inhibition of PPARα abrogated the protective effect of auraptene on phenylephrine-induced hypertrophic responses. In rats with MI, auraptene significantly improved MI-induced systolic dysfunction and increased posterior wall thickness compared to the vehicle. Auraptene treatment also suppressed MI-induced increases in myocardial cell diameter, perivascular fibrosis, and expression of hypertrophy and fibrosis response markers at the mRNA level compared with vehicle treatment. MI-induced decreases in the expression of PPARα-dependent genes were improved by auraptene treatment. CONCLUSIONS: Auraptene has beneficial effects on MI-induced cardiac hypertrophy and left ventricular systolic dysfunction in rats, at least partly due to PPARα activation. Further clinical studies are required to evaluate the efficacy of auraptene in patients with HF.


Subject(s)
Biological Products , Citrus , Heart Failure , Myocardial Infarction , Animals , Rats , Atrial Natriuretic Factor , Biological Products/therapeutic use , Cardiomegaly/drug therapy , Coumarins , Endothelin-1 , Fibrosis , Heart Failure/drug therapy , Heart Failure/etiology , Myocardial Infarction/drug therapy , Peroxisome Proliferators/therapeutic use , Phenylephrine , PPAR alpha/metabolism , Rats, Sprague-Dawley , RNA, Messenger
5.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34959669

ABSTRACT

Drug repositioning has recently emerged as a strategy for developing new treatments at low cost. In this study, we used a library of approved drugs to screen for compounds that suppress cardiomyocyte hypertrophy. We identified the antiplatelet drug sarpogrelate, a selective serotonin-2A (5-HT2A) receptor antagonist, and investigated the drug's anti-hypertrophic effect in cultured cardiomyocytes and its effect on heart failure in vivo. Primary cultured cardiomyocytes pretreated with sarpogrelate were stimulated with angiotensin II, endothelin-1, or phenylephrine. Immunofluorescence staining showed that sarpogrelate suppressed the cardiomyocyte hypertrophy induced by each of the stimuli. Western blotting analysis revealed that 5-HT2A receptor level was not changed by phenylephrine, and that sarpogrelate suppressed phenylephrine-induced phosphorylation of ERK1/2 and GATA4. C57BL/6J male mice were subjected to transverse aortic constriction (TAC) surgery followed by daily oral administration of sarpogrelate for 8 weeks. Echocardiography showed that 5 mg/kg of sarpogrelate suppressed TAC-induced cardiac hypertrophy and systolic dysfunction. Western blotting revealed that sarpogrelate suppressed TAC-induced phosphorylation of ERK1/2 and GATA4. These results indicate that sarpogrelate suppresses the development of heart failure and that it does so at least in part by inhibiting the ERK1/2-GATA4 signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...