Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 11(11)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-38001967

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterised by the progressive degeneration of motor neurons, resulting in muscle weakness, paralysis, and, ultimately, death. Presently, no effective treatment for ALS has been established. Although motor neuron dysfunction is a hallmark of ALS, emerging evidence suggests that sensory neurons are also involved in the disease. In clinical research, 30% of patients with ALS had sensory symptoms and abnormal sensory nerve conduction studies in the lower extremities. Peroneal nerve biopsies show histological abnormalities in 90% of the patients. Preclinical research has reported several genetic abnormalities in the sensory neurons of animal models of ALS, as well as in motor neurons. Furthermore, the aggregation of misfolded proteins like TAR DNA-binding protein 43 has been reported in sensory neurons. This review aims to provide a comprehensive description of ALS-related sensory neuron dysfunction, focusing on its clinical changes and underlying mechanisms. Sensory neuron abnormalities in ALS are not limited to somatosensory issues; proprioceptive sensory neurons, such as MesV and DRG neurons, have been reported to form networks with motor neurons and may be involved in motor control. Despite receiving limited attention, sensory neuron abnormalities in ALS hold potential for new therapies targeting proprioceptive sensory neurons.

2.
Nutrients ; 15(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37049492

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive disease affecting upper and lower motor neurons. Feeding disorders are observed in patients with ALS. The mastication movements and their systemic effects in patients with ALS with feeding disorders remain unclear. Currently, there is no effective treatment for ALS. However, it has been suggested that treating feeding disorders and improving nutritional status may prolong the lives of patients with ALS. Therefore, this study elucidates feeding disorders observed in patients with ALS and future therapeutic agents. We conducted a temporal observation of feeding behavior and mastication movements using an open-closed mouth evaluation artificial intelligence (AI) model in an ALS mouse model. Furthermore, to determine the cause of masticatory rhythm modulation, we conducted electrophysiological analyses of mesencephalic trigeminal neurons (MesV). Here, we observed the modulation of masticatory rhythm with a prolonged open phase in the ALS mouse model from the age of 12 weeks. A decreased body weight was observed simultaneously, indicating a correlation between the prolongation of the open phase and the decrease observed. We found that the percentage of firing MesV was markedly decreased. This study partially clarifies the role of feeding disorders in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Mice , Animals , Amyotrophic Lateral Sclerosis/drug therapy , Superoxide Dismutase-1 , Superoxide Dismutase , Artificial Intelligence , Mice, Transgenic , Motor Neurons/physiology , Disease Models, Animal , Feeding Behavior , Zinc/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...