Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 106: 129757, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38636718

ABSTRACT

9-cyanopyronin is a promising scaffold that exploits resonance Raman enhancement to enable sensitive, highly multiplexed biological imaging. Here, we developed cyano-Hydrol Green (CN-HG) derivatives as resonance Raman scaffolds to expand the color palette of 9-cyanopyronins. CN-HG derivatives exhibit sufficiently long wavelength absorption to produce strong resonance Raman enhancement for near-infrared (NIR) excitation, and their nitrile peaks are shifted to a lower frequency than those of 9-cyanopyronins. The fluorescence of CN-HG derivatives is strongly quenched due to the lack of the 10th atom, unlike pyronin derivatives, and this enabled us to detect spontaneous Raman spectra with high signal-to-noise ratios. CN-HG derivatives are powerful candidates for high performance vibrational imaging.


Subject(s)
Spectrum Analysis, Raman , Molecular Structure , Vibration , Nitriles/chemistry , Nitriles/chemical synthesis
2.
Nihon Yakurigaku Zasshi ; 159(1): 18-24, 2024.
Article in Japanese | MEDLINE | ID: mdl-38171832

ABSTRACT

Small-molecule based activatable fluorescence probes for detecting specific enzyme activity with high sensitivity can visualize the expression site of marker genes and cancers where the enzyme is highly expressed. However, the enzyme-catalyzed fluorescent hydrolysis product easily leaks out and diffuses from the reaction site, making it difficult to perform long-term tracking and immunohistochemical analysis which needs washing/fixation procedure. Our group have focused on quinone methide chemistry and developed series of activatable fluorescence probes with excellent intracellular retention that are converted to quinone-methide or aza-quinone-methide intermediates upon reaction with enzymes, which are then react with intracellular nucleophiles such as proteins and glutathione to be retained in cells and to exhibit significant increase in fluorescence. Based on this molecular design, we have developed fluorescence probes targeting ß-galactosidase and γ-glutamyltranspeptidase with different colors. We also developed photo-functional probes such as activatable photosensitizers and caged fluorophores. These probes can visualize or kill target enzyme-expressing cells with high selectivity by suppressing the leakage of hydrolysis products from target cells, and fluorescence imaging in combination with immunostaining was possible due to the high tolerance of the obtained fluorescence signal even after washing and fixation.


Subject(s)
Fluorescent Dyes , Neoplasms , Humans , Fluorescent Dyes/chemistry , Neoplasms/metabolism , Optical Imaging/methods , Quinones
3.
J Am Chem Soc ; 146(1): 521-531, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38110248

ABSTRACT

Carboxypeptidases (CPs) are a family of hydrolases that cleave one or more amino acids from the C-terminal of peptides or proteins and play indispensable roles in various physiological and pathological processes. However, only a few highly activatable fluorescence probes for CPs have been reported, and there is a need for a flexibly tunable molecular design platform to afford a range of fluorescence probes for CPs for biological and medical research. Here, we focused on the unique activation mechanism of ProTide-based prodrugs and established a modular design platform for CP-targeting florescence probes based on ProTide chemistry. In this design, probe properties such as fluorescence emission wavelength, reactivity/stability, and target CP can be readily tuned and optimized by changing the four probe modules: the fluorophore, the substituent on the phosphorus atom, the linker amino acid at the P1 position, and the substrate amino acid at the P1' position. In particular, switching the linker amino acid at position P1 enabled us to precisely optimize the reactivity for target CPs. As a proof-of-concept, we constructed probes for carboxypeptidase M (CPM) and prostate-specific membrane antigen (also known as glutamate carboxypeptidase II). The developed probes were applicable for the imaging of CP activities in live cells and in clinical specimens from patients. This design strategy should be useful in studying CP-related biological and pathological phenomena.


Subject(s)
Carboxypeptidases , ProTides , Male , Humans , Fluorescence , Carboxypeptidases/metabolism , Hydrolases , Amino Acids , Fluorescent Dyes/chemistry
4.
Sci Adv ; 9(24): eade9118, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37327330

ABSTRACT

Super-resolution vibrational microscopy is promising to increase the degree of multiplexing of nanometer-scale biological imaging because of the narrower spectral linewidth of molecular vibration compared to fluorescence. However, current techniques of super-resolution vibrational microscopy suffer from various limitations including the need for cell fixation, high power loading, or complicated detection schemes. Here, we present reversible saturable optical Raman transitions (RESORT) microscopy, which overcomes these limitations by using photoswitchable stimulated Raman scattering (SRS). We first describe a bright photoswitchable Raman probe (DAE620) and validate its signal activation and depletion characteristics when exposed to low-power (microwatt level) continuous-wave laser light. By harnessing the SRS signal depletion of DAE620 through a donut-shaped beam, we demonstrate super-resolution vibrational imaging of mammalian cells with excellent chemical specificity and spatial resolution beyond the optical diffraction limit. Our results indicate RESORT microscopy to be an effective tool with high potential for multiplexed super-resolution imaging of live cells.


Subject(s)
Microscopy , Vibration , Animals , Microscopy/methods , Spectrum Analysis, Raman/methods , Mammals
5.
J Am Chem Soc ; 145(16): 8871-8881, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37057960

ABSTRACT

Detecting multiple enzyme activities simultaneously with high spatial specificity is a promising strategy to investigate complex biological phenomena, and Raman imaging would be an excellent tool for this purpose due to its high multiplexing capabilities. We previously developed activatable Raman probes based on 9CN-pyronins, but specific visualization of cells with target enzyme activities proved difficult due to leakage of the hydrolysis products from the target cells after activation. Here, focusing on rhodol bearing a nitrile group at the position of 9 (9CN-rhodol), we established a novel mechanism for Raman signal activation based on a combination of aggregate formation (to increase local dye concentration) and the resonant Raman effect along with the bathochromic shift of the absorption, and utilized it to develop Raman probes. We selected the 9CN-rhodol derivative 9CN-JCR as offering a suitable combination of increased stimulated Raman scattering (SRS) signal intensity and high aggregate-forming ability, resulting in good retention in target cells after probe activation. By using isotope-edited 9CN-JCR-based probes, we could simultaneously detect ß-galactosidase, γ-glutamyl transpeptidase, and dipeptidyl peptidase-4 activities in live cultured cells and distinguish cell regions expressing target enzyme activity in Drosophila wing disc and fat body ex vivo.


Subject(s)
Spectrum Analysis, Raman , gamma-Glutamyltransferase , Animals , Cells, Cultured
6.
Chem Asian J ; 18(2): e202201086, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36461627

ABSTRACT

Photoactivatable fluorescence probes can track the dynamics of specific cells or biomolecules with high spatiotemporal resolution, but their broad absorption and emission peaks limit the number of wavelength windows that can be employed simultaneously. In contrast, the narrower peak width of Raman signals offers more scope for simultaneous discrimination of multiple targets, and therefore a palette of photoactivatable Raman probes would enable more comprehensive investigation of biological phenomena. Herein we report 9-cyano-10-telluriumpyronin (9CN-TeP) derivatives as photoactivatable Raman probes whose stimulated Raman scattering (SRS) intensity is enhanced by photooxidation of the tellurium atom. Modification to increase the stability of the oxidation product led to a julolidine-like derivative, 9CN-diMeJTeP, which is photo-oxidized at the tellurium atom by red light irradiation to afford a sufficiently stable oxidation product with strong electronic pre-resonance, resulting in a bathochromic shift of the absorption spectrum and increased SRS intensity.


Subject(s)
Light , Tellurium , Fluorescent Dyes , Spectrum Analysis, Raman/methods
7.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: mdl-33542099

ABSTRACT

Caenorhabditis elegans is used as a model system to understand the neural basis of behavior, but application of caged compounds to manipulate and monitor the neural activity is hampered by the innate photophobic response of the nematode to short-wavelength light or by the low temporal resolution of photocontrol. Here, we develop boron dipyrromethene (BODIPY)-derived caged compounds that release bioactive phenol derivatives upon illumination in the yellow wavelength range. We show that activation of the transient receptor potential vanilloid 1 (TRPV1) cation channel by spatially targeted optical uncaging of the TRPV1 agonist N-vanillylnonanamide at 580 nm modulates neural activity. Further, neuronal activation by illumination-induced uncaging enables optical control of the behavior of freely moving C. elegans without inducing a photophobic response and without crosstalk between uncaging and simultaneous fluorescence monitoring of neural activity.


Subject(s)
Behavior Control , Caenorhabditis elegans/physiology , Caenorhabditis elegans/radiation effects , Light , Neurons/physiology , Neurons/radiation effects , Animals , Fluorescence , Interneurons/physiology , Promoter Regions, Genetic/genetics , TRPV Cation Channels/agonists , TRPV Cation Channels/metabolism
8.
Anal Chem ; 93(7): 3470-3476, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33566568

ABSTRACT

Basic carboxypeptidases (basic CPs) cleave the C-terminal basic amino acid of peptides, and their activity is upregulated in some types of cancers. Therefore, detecting the activity of basic CPs in living cells would be important not only for studying the physiological functions of these enzymes but also for visualization of cancerous tissues. Here, we report two fluorescein diacetate (FDA)-based activatable fluorescence probes, named 5ArgAF-FDA and 5LysAF-FDA, in which the substrate amino acid arginine or lysine is conjugated to the benzene moiety via an azoformyl linker. In live-cell fluorescence imaging of CPM, one of the seven basic CPs, 5ArgAF-FDA showed a larger intracellular fluorescence increase than did 5LysAF-FDA within a few minutes. This increase was inhibited by coincubation with 2-mercaptomethyl-3-guanidinoethylthiopropanoic acid (MGTA), an inhibitor of basic CPs. When 5ArgAF-FDA was applied to a coculture of two breast cancer cell lines with different CPM activities, the fluorescence increase in individual cells was correlated with the expression level of CPM, suggesting that 5ArgAF-FDA has the ability to distinguish cell lines having different levels of CPM activity, owing to its high intracellular retention. We believe these probes will be useful for imaging cancers with upregulated basic CP activity.


Subject(s)
Carboxypeptidases , Peptides , Fluorescence , Lysine
9.
J Am Chem Soc ; 141(26): 10409-10416, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31244179

ABSTRACT

Prostate cancer (PCa) is a common malignant tumor among adult males, and convenient intraoperative detection of PCa would reduce the risk of leaving positive surgical margins, especially during nerve-sparing procedures. To achieve rapid, fluorescence-based visualization of PCa, we focused on the glutamate carboxypeptidase (CP) activity of prostate-specific membrane antigen (PSMA), a type II transmembrane glycoprotein that is attracting attention as a PCa biomarker. Based on our finding that aryl glutamate conjugates with an azoformyl linker are recognized by PSMA and have a sufficiently low LUMO (lowest unoccupied molecular orbital) energy level to quench the fluorophore through photoinduced electron transfer, we designed and synthesized a first-in-class activatable fluorescence probe for CP activity of PSMA. The developed probe allowed us to visualize the CP activity of PSMA in living cells and in clinical specimens from PCa patients and is expected to be useful for rapid intraoperative detection and diagnosis of PCa.


Subject(s)
Antigens, Surface/metabolism , Fluorescence , Fluorescent Dyes/chemistry , Glutamate Carboxypeptidase II/metabolism , Prostatic Neoplasms/diagnostic imaging , Antigens, Surface/analysis , Cell Line, Tumor , Glutamate Carboxypeptidase II/analysis , Humans , Male , Molecular Structure , Optical Imaging , PC-3 Cells , Prostatic Neoplasms/metabolism , Recombinant Proteins/analysis , Recombinant Proteins/metabolism , Spectrometry, Fluorescence , Substrate Specificity
10.
Bioorg Med Chem Lett ; 28(1): 1-5, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29239736

ABSTRACT

Photoremovable protective groups, or caging groups, enable us to regulate the activities of bioactive molecules in living cells upon photoirradiation. Nevertheless, requirement of UV light for activating caging group is a significant limitation due to its cell toxicity and its poor tissue penetration. Our group previously reported a 500 nm light-activatable caging group based on BODIPY scaffold, however, its uncaging efficiency was lower than those of conventional caging groups. Here we show that the uncaging quantum yield (QY) of BODIPY caging group depends upon the driving force of photo-induced electron transfer (PeT). We also found that the uncaging QY increased in less polar solvents. We applied these findings to develop BODIPY-caged capsaicin, which is well localized to low-polarity intracellular compartments, as a tool to stimulate TRPV1 in live cells in response to blue-green light.


Subject(s)
Benzylamines/pharmacology , Boron Compounds/pharmacology , Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Fatty Acids/pharmacology , Benzylamines/chemical synthesis , Benzylamines/chemistry , Benzylamines/radiation effects , Boron Compounds/chemical synthesis , Boron Compounds/chemistry , Boron Compounds/radiation effects , Calcium/metabolism , Capsaicin/chemical synthesis , Capsaicin/radiation effects , Fatty Acids/chemical synthesis , Fatty Acids/chemistry , Fatty Acids/radiation effects , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Light , Solvents/chemistry , TRPV Cation Channels/agonists
SELECTION OF CITATIONS
SEARCH DETAIL
...