Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 16(1): e0245878, 2021.
Article in English | MEDLINE | ID: mdl-33503053

ABSTRACT

Respiratory-gated four-dimensional phase-contrast vastly undersampled isotropic projection reconstruction (4D PC-VIPR) is magnetic resonance (MR) imaging technique that enables analysis of vascular morphology and hemodynamics in a single examination using cardiac phase resolved 3D phase-contrast magnetic resonance imaging. The present study aimed to assess the usefulness of 4D PC-VIPR for the superior mesenteric artery (SMA) flowmetry before and after flow increase was induced by the herbal medicine Daikenchuto (TJ-100) by comparing it with Doppler ultrasound (DUS) as a current standard. Twenty healthy volunteers were enrolled in this prospective single-arm study. The peak cross-sectionally averaged velocity was measured by 4D PC-VIPR, peak velocity was measured by DUS, and flow volume (FV) of SMA and aorta were measured by 4D PC-VIPR and DUS 25 min before and after the peroral administration of TJ-100. The peak cross-sectionally averaged velocity, peak velocity, and FV of SMA measured by 4D PC-VIPR and DUS significantly increased after administration of TJ-100 (4D PC-VIPR: the peak cross-sectionally averaged velocity; p = 0.004, FV; p = 0.035, DUS: the peak velocity; p = 0.003, FV; p = 0.010). Furthermore, 4D PC-VIPR can analyze multiple blood vessels simultaneously. The ratio of the SMA FV to the aorta, before and after oral administration on the 4D PC-VIPR test also increased (p = 0.015). The rate of change assessed by 4D PC-VIPR and DUS were significantly correlated (the peak cross-sectionally averaged velocity and peak velocity: r = 0.650; p = 0.005, FV: r = 0.659; p = 0.004). Retrospective 4D PC-VIPR was a useful modality for morphological and hemodynamic analysis of SMA.


Subject(s)
Magnetic Resonance Imaging/standards , Mesenteric Arteries/diagnostic imaging , Plant Extracts/pharmacology , Respiratory-Gated Imaging Techniques/standards , Ultrasonography, Doppler/standards , Adult , Blood Flow Velocity , Female , Humans , Magnetic Resonance Imaging/methods , Male , Mesenteric Arteries/drug effects , Mesenteric Arteries/physiology , Panax , Respiratory-Gated Imaging Techniques/methods , Ultrasonography, Doppler/methods , Zanthoxylum , Zingiberaceae
2.
Magn Reson Med Sci ; 19(4): 366-374, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32009062

ABSTRACT

PURPOSE: 2D cine phase contrast (PC)-MRI is a standard velocimetry for the superior mesenteric artery (SMA); however, the optimal localization of the measurement plane has never been fully discussed previously. The purpose of this Institutional Review Board approved prospective and single arm study is to test whether flow velocimetry of the SMA with combined use of 2D cine PC-MRI and meal challenge is dependent on the localizations of the measurement planes and to seek optimal section for velocimetry. METHODS: Seven healthy volunteers underwent cardiac phase resolved ECG gated 2D cine PC-MRI pre- and 30 min post-meal challenge at three measurement planes: proximal, curved mid section and distal straight section of the SMA at 3T. 4D Flow using 3D cine PC-MRI with vastly undersampled isotropic projection imaging (PC VIPR) was also performed right after 2D cine PC-MRI to delineate the flow dynamics within the SMA using streamline analysis. Two radiologists measured flow velocities, and rated the appearances of the abnormal flow in the SMA on streamlines derived from the 4D Flow and the computational fluid dynamics (CFD). RESULTS: 2D cine PC-MRI measured increased temporally averaged flow velocity (mm/s) after the meal challenge only in the proximal (129.3 vs. 97.8, P = 0.0313) and distal section (166.9 vs. 96.2, P = 0.0313), not in the curved mid section (113.1 vs. 85.5, P = 0.0625). The average velocities were highest and their standard errors (8.5-26.5) were smallest at the distal straight section both before and after the meal challenge as compared with other sections. The streamline analysis depicted more frequent appearances of vertical or helical flow in the curved mid section both on 4D Flow and CFD (κ: 0.27-0.68). CONCLUSION: SMA velocimetry with 2D cine PC-MRI was dependent on the localization of the measurement planes. Distal straight section, not in the curved mid section is recommended for MR velocimetry.


Subject(s)
Blood Flow Velocity , Hydrodynamics , Imaging, Three-Dimensional , Magnetic Resonance Imaging, Cine , Mesenteric Artery, Superior/diagnostic imaging , Adult , Female , Healthy Volunteers , Humans , Male , Middle Aged , Postprandial Period , Prospective Studies , Rheology , Young Adult
3.
Magn Reson Med Sci ; 18(4): 265-271, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-30828045

ABSTRACT

PURPOSE: The accuracy of flow velocity and three-directional velocity components are important for the precise visualization of hemodynamics by 3D cine phase-contrast MRI (3D cine PC MRI, also referred to as 4D-flow). The aim of this study was to verify the accuracy of these measurements of prototype or commercially available 3D cine PC MRI obtained by three different manufactures' MR scanners. METHODS: The verification of the accuracy of flow velocity in 3D cine PC MRI was performed by circulating blood mimicking fluid through a straight-tube phantom in a slanting position, such that the three-directional velocity components were simultaneously measurable, using three 3T MR scanners from different manufacturers. The data obtained were processed by phase correction, and the velocity and three-directional velocity components in the center of the tube on the central cross section of a slab were calculated. The velocity profile in each three directions and the composite velocity profiles were compared with the calculated reference values, using the Hagen-Poiseuille equation. In addition, velocity profiles and the spatially time-averaged velocity perpendicular to the tube were compared with the theoretical values and measured values by a flowmeter, respectively. RESULTS: An underestimation of the maximum velocity in the center of the tube and an overestimation of the velocity near the tube wall due to partial volume effects were observed in all three scanners. A roughening and flattening of profiles in the center of the tube were observed in one scanner, due, presumably, to the low signal-to-noise ratio. However, the spatially time-averaged velocities corresponded well with the measured values by the flowmeter in all three scanners. CONCLUSION: In this study, we have demonstrated that the accuracy of flow velocity and three-directional velocity components in 3D cine PC MRI was satisfactory in all three MR scanners.


Subject(s)
Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging, Cine , Magnetic Resonance Imaging, Cine/instrumentation , Magnetic Resonance Imaging, Cine/methods , Magnetic Resonance Imaging, Cine/standards , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL