Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 62(24): e202303494, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37058001

ABSTRACT

Post-synthesis modification of polymers streamlines the synthesis of functionalized polymers, but is often incomplete due to the negative polymer effects. Developing efficient polymer reactions in artificial systems thus represents a long-standing objective in the fields of polymer and material science. Here, we show unprecedented macrocycle-metal-complex-catalyzed systems for efficient polymer reaction that result in 100 % transformation of the main chain functional groups presumably via a processive mode reaction. The complete polymer reactions were confirmed in not only intramolecular reaction (hydroamination) but also intermolecular reaction (hydrosilylation) by using Pd- and Pt-macrocycle-catalyzed systems. The most fascinating feature of the both reactions is that higher-molecular-weight polymers reach completion faster. Various studies suggested that the reactions occur in the catalyst cavity via the formation of a supramolecular complex between the macrocycle catalyst and polymer substrate like pseudorotaxane, which should be of characteristic of the efficient polymer reactions progressing in a processive mode.

2.
Molecules ; 27(3)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35164328

ABSTRACT

The acid dissociation constant of three benzimidazoles, namely 2,2'-bibenzo[d]imidazole, 2,5'-bibenzo[d]imidazole, and 5,5'-bibenzo[d]imidazole, have been investigated by means of density functional theory calculations in gas phase and in aqueous solution. The theoretical approach was validated by the comparing of predicted and experimentally determined pKa values in imidazole, benzimidazole, and 2-phenylbenzimidazole. From the studied compounds, 2,2'-bibenzo[d]imidazole was found to be the most acidic, which made it a valuable candidate as a material for polymer electrolyte membrane fuel cells.

4.
J Chem Inf Model ; 60(7): 3499-3507, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32551637

ABSTRACT

The molecular dynamics (MD) technique to accelerate simulation of phase transition to liquid-crystalline (LC) phases is demonstrated on the model LC system 4-octyl-4'-cyanobiphenyl (8CB) smectic A phase. Simulation of a phase transition to a smectic phase is challenging because an intrinsically long simulation time and large system size are required owing to the high order and low onset temperature. Acceleration of the simulated transition of 8CB to the smectic A phase was ultimately achieved by selectively weakening the intermolecular Lennard-Jones interaction of alkyl chains and then returning the scaled interaction to the unscaled one. The total time needed to form the smectic A phase using selectively scaled and returned molecular dynamics (ssrMD) was five times shorter than that when using unscaled MD. Formation of the smectic A phase occurred only when induced polarization from the antiparallel dipole dimer point charge was included in the simulation. The use of ssrMD presented herein is anticipated to accelerate the theoretical development of self-assembled organic materials containing both rigid and flexible moieties, including LC materials.


Subject(s)
Liquid Crystals , Molecular Dynamics Simulation , Acceleration , Phase Transition , Polymers
5.
Angew Chem Int Ed Engl ; 59(31): 12925-12930, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32274844

ABSTRACT

The development of a robust amide-bond formation remains a critical aspect of N-methylated peptide synthesis. In this study, we synthesized a variety of dipeptides in high yields, without severe racemization, from equivalent amounts of amino acids. Highly reactive N-methylimidazolium cation species were generated in situ to accelerate the amidation. The key to success was the addition of a strong Brønsted acid. The developed amidation enabled the synthesis of a bulky peptide with a higher yield in a shorter amount of time compared with the results of conventional amidation. In addition, the amidation can be performed by using either a microflow reactor or a conventional flask. The first total synthesis of naturally occurring bulky N-methylated peptides, pterulamides I-IV, was achieved. Based on experimental results and theoretical calculations, we speculated that a Brønsted acid would accelerate the rate-limiting generation of acyl imidazolium cations from mixed carbonic anhydrides.


Subject(s)
Dipeptides/chemical synthesis , Hydrochloric Acid/chemistry , Imidazoles/chemistry , Stereoisomerism
6.
Dalton Trans ; 49(9): 2781-2785, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32083632

ABSTRACT

Double cyclometalation of planar, oligomeric phenylpyridines yielded dinuclear palladium(ii) complexes with novel out-of-plane anisotropy. An X-ray crystal structure analysis revealed that the complexes exhibit concave-convex geometry, and 1H NMR measurement evidenced the occurrence of stable out-of-plane anisotropy. The dipole moment and Pd-Pd interaction were investigated by theoretical calculations.

7.
Org Lett ; 22(2): 661-665, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-31886679

ABSTRACT

A Rh(III)-catalyzed annulative coupling of 3,5-diarylisothiazoles and alkynes is reported. The N-S bond in the isothiazole ring acts as an internal oxidant to regenerate the Rh(III) species in combination with an external Cu(II) oxidant, and the corresponding 1:2 coupling products are obtained. The remarkable difference in the reaction outcome between isothiazoles and the relevant isoxazoles has been investigated by DFT calculations, revealing that the relative stability of the enolate intermediates dictates the product selectivity.

8.
J Phys Chem B ; 124(5): 881-889, 2020 Feb 06.
Article in English | MEDLINE | ID: mdl-31880459

ABSTRACT

All-atom molecular dynamics simulations were performed on 4-heptyl-4'-cyanobiphenyl (7CB) to study the mechanism of heat conduction in this nematic liquid crystal atomistically. To describe 7CB properly, the AMBER-type force field was optimized for the dihedral parameter of biphenyl and the Lennard-Jones parameters. The molecular dynamics calculation using the optimized force field well reproduced the experimental values of the isotropic-nematic phase transition temperature, density, and anisotropy of the thermal conductivity. Furthermore, the contributions of convection, intramolecular interaction, and intermolecular interaction to the thermal conductivity were determined by performing thermal conductivity decomposition analysis. According to the analysis, the contributions of convection, bond stretching, and bond bending interactions were higher in the direction parallel to the nematic director than that perpendicular to the director, which is the origin of the anisotropy in the nematic phase. This result indicates that the anisotropy is caused by well-aligned covalent bonds and high mobility parallel to the director. This quantitative description of the mechanism of heat conduction of 7CB is foreseen to provide new insights toward designing highly thermally conductive liquid-crystalline materials.

9.
Chem Asian J ; 15(3): 356-359, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-31823483

ABSTRACT

We synthesised palladium and platinum complexes possessing cyclic and acyclic pincer-type polyaromatic ligands and investigated their structural effect on the catalysis. The pincer-type bis(6-arylpyridin-2-yl)benzene skeleton was constructed via Kröhnke pyridine synthesis under transition metal-free conditions on gram-scale quantity. Ligand structure significantly influenced catalytic activity toward the platinum-catalysed hydrosilylation of diphenyl acetylenes, despite the ligand-independence of the conformations and electronic properties of these complexes.

10.
Chem Commun (Camb) ; 56(5): 774-777, 2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31845681

ABSTRACT

Kinetically stabilized 1-phosphahaloprenes (2-halo-1-phosphabutadienes) as well as 1-phosphaisoprene undergo a hitherto unknown phospha-Diels-Alder dimerization of the P[double bond, length as m-dash]C-C[double bond, length as m-dash]C units upon heating. The [4+2] cyclodimerization is highly stereo- and regio-selective. The phosphaalkene-substituted phosphacyclohexene product is an unprecedented P(sp2),P(sp3) ligand that is of interest in polymer/materials science and catalysis.

11.
J Am Chem Soc ; 142(3): 1621-1629, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31868360

ABSTRACT

A Lewis base catalyst Trip-SMe (Trip = triptycenyl) for electrophilic aromatic halogenation using N-halosuccinimides (NXS) is introduced. In the presence of an appropriate activator (as a noncoordinating-anion source), a series of unactivated aromatic compounds were halogenated at ambient temperature using NXS. This catalytic system was applicable to transformations that are currently unachievable except for the use of Br2 or Cl2: e.g., multihalogenation of naphthalene, regioselective bromination of BINOL, etc. Controlled experiments revealed that the triptycenyl substituent exerts a crucial role for the catalytic activity, and kinetic experiments implied the occurrence of a sulfonium salt [Trip-S(Me)Br][SbF6] as an active species. Compared to simple dialkyl sulfides, Trip-SMe exhibited a significant charge-separated ion pair character within the halonium complex whose structural information was obtained by the single-crystal X-ray analysis. A preliminary computational study disclosed that the π system of the triptycenyl functionality is a key motif to consolidate the enhancement of electrophilicity.

12.
Org Biomol Chem ; 18(1): 93-101, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31796945

ABSTRACT

Thirteen readily accessible azo D-π-A dyes, intended for use as photothermal agents, were synthesized using only a few steps. Absorption wavelengths were readily tuned by changing the building blocks, and 6 of these dyes exhibited NIR absorption that would be useful for biomedical applications. Unexpected suppression of an N-C single bond rotation that neighbors the azo bond was observed in the case of 5 dyes. Photothermal conversion efficiency measurements revealed a significant effect of the D moiety in these synthesized azo D-π-A dyes, but neither the π moiety nor the A moiety showed an obvious influence. The obtained results offer valuable information for the design of high-performance azo D-π-A dyes that have utility as photothermal agents.

13.
RSC Adv ; 9(19): 10807-10813, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-35515293

ABSTRACT

The quinoxalineimide (QI) unit, containing the electron-withdrawing quinoxaline and imide groups, is an electron-deficient building block for organic semiconductor materials. In this study, three fluorinated or chlorinated QIs (QI-1F, QI-2F, and QI-2Cl), have been designed and developed. We report the impact of the fluorination or chlorination of the QI unit on the electronic structures and charge carrier transport properties as compared to unsubstituted QI (QI-2H) bearing the same n-hexyl side chains. The frontier molecular orbital energy levels downshifted with the incorporation of fluorine or chlorine atoms onto the π-framework of QI. Single-crystal structure analyses revealed that all QI-based molecules have an entirely planar backbone and are packed into two-dimensional slipped stacks with diagonal electronic coupling that enables two-dimensional charge carrier transport. Notably, the doubly fluorinated or chlorinated QIs formed compact molecular packing in the single-crystal structures through an infinite intermolecular network relative to unsubstituted QI (QI-2H). The field-effect transistor-based QI molecules exhibited typical n-channel transport properties. As compared to unsubstituted QI (QI-2H), the chlorinated QI exhibited improved electron mobilities up to 7.1 × 10-3 cm2 V-1 s-1. The threshold voltages of the fluorinated or chlorinated QI devices were clearly smaller than that of QI-2H, which reflects the lowest unoccupied molecular orbital levels of the molecules. This study demonstrates that the fluorinated or chlorinated QIs are versatile building blocks in creating n-channel organic semiconductor materials.

14.
Chem Asian J ; 13(19): 2842-2846, 2018 Oct 04.
Article in English | MEDLINE | ID: mdl-30160029

ABSTRACT

The highly enantioselective Diels-Alder reaction of acetylenic dienophiles is shown to be effectively catalyzed by cationic chiral palladium complexes. Not only the degree but also the sense of enantioselectivity critically depends on the steric demand of ligands. Computational analyses indicate that the steric demand does not affect the endo/exo-selectivity but the enantioface selectivity of dienes.

15.
Org Lett ; 20(12): 3670-3673, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29874086

ABSTRACT

A diphosphination of arynes with diphosphines has been developed. The reaction of stable aryne precursors, 2-(trimethylsilyl)aryl triflates, with tetraaryldiphosphines proceeds in the presence of fluorine- or carbonate-based activators to deliver the corresponding diphosphinated products, sterically and electronically tuned 1,2-bis(diphenylphosphino)benzene (dppbz) derivatives, which can find wide application in transition metal catalysis and material science. Additionally, preliminary computational studies on the reaction mechanism are also reported.

16.
J Org Chem ; 83(10): 5639-5649, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29706075

ABSTRACT

The rhodium(III)-catalyzed direct alkenylation of N-phenylindole-3-carboxylic acids with alkenes including acrylate ester, acrylamide, and acrylonitrile proceeds smoothly at the C4-position through regioselective C-H bond cleavage directed by the carboxyl group. In marked contrast, the indole substrates react with diarylacetylenes accompanied by cleavage of the C2-H and C2'-H bonds and decarboxylation to produce 5,6-diarylindolo[1,2- a]quinolone derivatives. DFT calculations have suggested that the smooth insertion of an alkene to a C4-rhodated six-membered metallacycle intermediate leads to the C4 alkenylated products, while the latter annulation at the C2- and C2'-positions is attributable to facile reductive elimination in the corresponding seven-membered metallacycles formed by the double C-H bond cleavage and alkyne insertion.

17.
Chemistry ; 24(22): 5723-5727, 2018 Apr 17.
Article in English | MEDLINE | ID: mdl-29516563

ABSTRACT

It has been established that a cyclopentadienyl RhIII complex with two phenyl groups and a pendant amide moiety catalyzes the formal Lossen rearrangement/[3+2] annulation cascade of N-pivaloyl benzamides and acrylamides with alkynes leading to substituted indoles and pyrroles. Mechanistic studies revealed that this cascade reaction proceeds via not the Lossen rearrangement to form anilides or enamides but C-H bond cleavage, alkyne insertion, and the formal Lossen rearrangement.

18.
Chemistry ; 24(31): 7852-7855, 2018 Jun 04.
Article in English | MEDLINE | ID: mdl-29573094

ABSTRACT

The iridium(III)/copper(II)-catalyzed dehydrogenative coupling of salicylaldehydes with internal alkynes proceeds efficiently under atmospheric oxygen through aldehyde C-H bond cleavage and decarbonylation. A variety of benzofuran derivatives can be synthesized by the environmentally benign procedure. DFT calculations suggest that this unique transformation involves the facile deinsertion of CO in the key metallacycle intermediate, which is in marked contrast to the corresponding rhodium(III) catalysis that leads to CO-retentive chromone derivatives.

19.
Chemistry ; 24(28): 7161-7171, 2018 May 17.
Article in English | MEDLINE | ID: mdl-29484757

ABSTRACT

A new synthetic route to highly fluorescent benzofuranylmethylidenebenzoxasiloles through cationic rhodium(I)/binap complex-catalyzed cascade cycloisomerization of bis(2-ethynylphenol)silanes has been developed involving 1,2-silicon and 1,3-carbon (alkyne) migrations followed by oxycyclization. The present synthesis requires only three steps, starting from commercially available dichlorodiisopropylsilane, which is markedly shorter than our previous synthesis (eight steps starting from commercially available chlorodiisopropylsilane). Theoretical calculations elucidated the mechanism of the above cascade cycloisomerization. This reaction is initiated by the formation of a rhodium vinylidene not through direct 1,2-silicon migration but rather through an unprecedented stepwise 1,5-silicon migration followed by C-Si bond-forming cyclization from a dearomatized allenylrhodium complex. Subsequent 1,3-carbon (alkyne) migration leading to a η3 -allenyl/propargyl-rhodium complex followed by oxycyclization through π-bond (alkyne) activation with the cationic rhodium(I) complex affords the benzofuranylmethylidenebenzoxasilole product. The structure-fluorescence property relationships of the thus obtained benzofuranylmethylidenebenzoxasiloles were investigated, which revealed that good fluorescence quantum yields were generated in the solution state (φF =69-87 %) by introduction of electron-donating alkyl and phenyl groups on two phenoxy groups. In the powder state, 4-methyl- and 4-methoxy-phenoxy derivatives exhibited efficient blue fluorescence (φF =52 % and 46 %, respectively). Especially, the 4-methylphenoxy derivative was thermally stable, and exhibited strong narrow-band fluorescence in the film state (blue, φF =95 %) and redshifted strong narrow-band fluorescence (green, φF =90 %) in the crystalline state as a result of the formation of an offset π-stacked dimer; the latter was confirmed by X-ray crystallographic analysis and by theoretical calculations.

20.
Chemistry ; 23(30): 7227-7231, 2017 May 29.
Article in English | MEDLINE | ID: mdl-28402001

ABSTRACT

The synthesis of alternating donor-acceptor [12] and [16]cycloparaphenylenes (CPPs) has been achieved by the rhodium-catalyzed intermolecular cross-cyclotrimerization followed by imidation and/or aromatization. These alternating donor-acceptor CPPs showed positive solvatofluorochromic properties and smaller HOMO-LUMO gaps compared with nonfunctionalized CPPs, which was confirmed by the theoretical study.

SELECTION OF CITATIONS
SEARCH DETAIL
...