Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microbes Environ ; 33(3): 340-344, 2018 Sep 29.
Article in English | MEDLINE | ID: mdl-30146542

ABSTRACT

PCR clamping by locked nucleic acid (LNA) oligonucleotides is an effective technique for selectively amplifying the community SSU rRNA genes of plant-associated bacteria. However, the original primer set often shows low amplification efficiency. In order to improve this efficiency, new primers were designed at positions to compete with LNA oligonucleotides. Three new sets displayed higher amplification efficiencies than the original; however, efficiency varied among the primer sets. Two new sets appeared to be available in consideration of bacterial profiles by next-generation sequencing. One new set, KU63f and KU1494r, may be applicable to the selective gene amplification of plant-associated bacteria.


Subject(s)
Bacteria/genetics , Bacterial Typing Techniques/methods , Microbiota/genetics , Oligonucleotides/genetics , Plants/microbiology , Polymerase Chain Reaction , Ribosome Subunits, Small, Bacterial/genetics , Bacteria/classification , Bacteria/isolation & purification , DNA Primers/genetics , DNA, Bacterial/genetics , High-Throughput Nucleotide Sequencing , Mitochondria/genetics , Plants/genetics , Plastids/genetics , Sequence Analysis, DNA
2.
Microbes Environ ; 31(3): 339-48, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27600711

ABSTRACT

The simultaneous extraction of host plant DNA severely limits investigations of the community structures of plant-associated fungi due to the similar homologies of sequences in primer-annealing positions between fungi and host plants. Although fungal-specific primers have been designed, plant DNA continues to be excessively amplified by PCR, resulting in the underestimation of community structures. In order to overcome this limitation, locked nucleic acid (LNA) primers and PCR clamping by LNA oligonucleotides have been applied to enhance the amplification of fungal internal transcribed spacer (ITS) regions. LNA primers were designed by converting DNA into LNA, which is specific to fungi, at the forward primer side. LNA oligonucleotides, the sequences of which are complementary to the host plants, were designed by overlapping a few bases with the annealing position of the reverse primer. Plant-specific DNA was then converted into LNA at the shifted position from the 3' end of the primer-binding position. PCR using the LNA technique enhanced the amplification of fungal ITS regions, whereas those of the host plants were more likely to be amplified without the LNA technique. A denaturing gradient gel electrophoresis (DGGE) analysis displayed patterns that reached an acceptable level for investigating the community structures of plant-associated fungi using the LNA technique. The sequences of the bands detected using the LNA technique were mostly affiliated with known isolates. However, some sequences showed low similarities, indicating the potential to identify novel fungi. Thus, the application of the LNA technique is considered effective for widening the scope of community analyses of plant-associated fungi.


Subject(s)
Biota , DNA Primers/metabolism , DNA, Ribosomal Spacer/genetics , Fungi/classification , Oligonucleotides/metabolism , Plants/microbiology , Polymerase Chain Reaction/methods , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal Spacer/chemistry , Denaturing Gradient Gel Electrophoresis , Fungi/genetics , Sensitivity and Specificity
3.
Int J Syst Evol Microbiol ; 65(Pt 2): 570-577, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25404482

ABSTRACT

A thermophilic, agar-degrading bacterium, strain FAB2(T), was isolated from sewage sludge compost. According to phylogenetic analysis based on 16S rRNA gene sequences, strain FAB2(T) belonged to the family Paenibacillaceae within the phylum Firmicutes. However, FAB2(T) was different enough at the genus level from closely related species. The percentages of 16S rRNA gene sequence similarity with related organisms were 90.4 % for Thermobacillus xylanilyticus, 91.8 % for Paenibacillus barengoltzii, 89.4 % for Cohnella lupini, 90.1 % for Fontibacillus aquaticus, and 89.0 % for Saccharibacillus sacchari. Morphological and physiological analyses revealed that the strain was motile, rod-shaped, Gram-stain-positive, aerobic and able to form oval endospores in swollen sporangia. Ammonium was required as a nitrogen source while nitrate, nitrite, urea and glutamate were not utilized. Catalase and oxidase activities were weakly positive and positive, respectively. The bacterium grew in the temperature range of 50-65 °C and in media with pH 7.5 to 9.0. Optimal growth occurred at 60 °C and pH 8.0-8.6. Growth was inhibited at pH≤7.0 and NaCl concentrations ≥2.5 % (w/v). In chemotaxonomic characterization, MK-7 was identified as the dominant menaquinone. Major fatty acids were iso-C16 : 0 and C16 : 0. Dominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Phosphatidylcholine was present in a moderate amount. The diamino acid in the cell wall was meso-diaminopimelic acid. The G+C content of the genomic DNA was 49.5 mol% in a nucleic acid study. On the basis of genetic and phenotypic characteristics, strain FAB2(T) ( = NBRC 109510(T) = KCTC 33130(T)) showed characteristics suitable for classification as the type strain of a novel species of a new genus in the family Paenibacillaceae, for which the name Ammoniibacillus agariperforans gen. nov., sp. nov. is proposed.


Subject(s)
Agar/metabolism , Bacillales/classification , Phylogeny , Soil Microbiology , Bacillales/genetics , Bacillales/isolation & purification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Gram-Positive Rods/genetics , Gram-Positive Rods/growth & development , Gram-Positive Rods/isolation & purification , Japan , Molecular Sequence Data , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...