Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 12(4)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35448330

ABSTRACT

Efficient downstream processing represents a significant challenge in the rapidly developing field of therapeutic viruses. While it is known that the terminal sterile filtration step can be a major cause of product loss, there is little known about the effect of host cell impurities (DNA and protein) on filtration performance. In this study, fractions of relatively pure Vero host cell protein and DNA were spiked into a highly pure preparation of vesicular stomatitis virus (VSV). Then, the resulting solutions were sterile filtered using two commercially available 0.22 µm rated microfiltration membranes. A combination of transmembrane pressure measurements, virus recovery measurements, and post-filtration microscopy images of the microfiltration membranes was used to evaluate the sterile filtration performance. It was found that increasing the amount of host cell protein from approximately 1 µg/mL (in the un-spiked VSV preparation) to 25 µg/mL resulted in a greater extent of membrane fouling, causing the VSV recovery to decrease from 89% to 65% in experiments conducted with the highly asymmetric Express PLUS PES membrane and to go as low as 48% in experiments conducted with the symmetric Durapore PVDF membrane. Similar effects were not seen when bovine serum albumin, a common model protein used in filtration studies, was spiked into the VSV preparation, which indicates that the sterile filtration performance is critically dependent on the complex composition of the mixture of host cell proteins rather than the presence of any protein. The results presented in this work provide important insights into the role of host cell impurities on the performance of sterile filtration processes for therapeutic viruses.

2.
Biotechnol Bioeng ; 113(10): 2131-9, 2016 10.
Article in English | MEDLINE | ID: mdl-27563852

ABSTRACT

There is considerable interest in developing microscale (i.e., high-throughput) methods that enable multiple filtration experiments to be run in parallel with smaller sample amounts and thus reduce the overall required time and associated cost to run the filtration tests. Previous studies to date have focused on simply evaluating the filtration capacity, not the separation performance. In this work, the stirred-well filtration (SWF) method was used in combination with design-of-experiment (DOE) methods to optimize the separation performance for three binary mixtures of bio-molecules: protein-protein, protein-polysaccharide, and protein-DNA. Using the parallel based format of the SWF method, eight constant-flux ultrafiltration experiments were conducted at once to study the effects of stirring conditions, permeate flux, and/or solution conditions (pH, ionic strength). Four separate filtration tests were conducted for each combination of process variables; in total, over 100 separate tests were conducted. The sieving coefficient and selectivity results are presented to match the DOE design format and enable a greater understanding of the effects of the different process variables that were studied. The method described herein can be used to rapidly determine the optimal combination of process factors that give the best separation performance for a range of membrane-based separations applications and thus obviate the need to run a large number of traditional lab-scale tests. Biotechnol. Bioeng. 2016;113: 2131-2139. © 2016 Wiley Periodicals, Inc.


Subject(s)
Biopolymers/chemistry , Biopolymers/isolation & purification , Centrifugation/methods , Models, Chemical , Ultrafiltration/methods , Adsorption , Complex Mixtures/chemistry , Complex Mixtures/isolation & purification , Computer Simulation , Diffusion , Research Design , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...