Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cureus ; 14(8): e28113, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36134075

ABSTRACT

Purpose To describe spinopelvic adaptations in the standing and sitting positions in patients with adult spinal deformity (ASD). Methods Ninety-five patients with ASD and 32 controls completed health-related quality of life (HRQOL) questionnaires: short form 36 (SF36), Oswestry Disability Index (ODI), and visual analog scale (VAS) for pain. They underwent biplanar radiography in both standing and sitting positions. Patients with ASD were divided into ASD-front (frontal deformity Cobb > 20°, n = 24), ASD-sag (sagittal vertical axis (SVA) > 50 mm, pelvic tilt (PT) > 25°, or pelvic incidence (PI)-lumbar lordosis (LL) > 10°, n = 40), and ASD-hyper thoracic kyphosis (TK >60°, n = 31) groups. Flexibility was defined as the difference (Δ) in radiographic parameters between the standing and sitting positions. The radiographic parameters were compared between the groups. Correlations between HRQOL scores were evaluated. Results All participants increased their SVA from standing to sitting (ΔSVA<0), except for patients with ASD-sag, who tended to decrease their SVA (78-62 mm) and maximize their pelvic retroversion (27-40° vs 10-34° in controls, p<0.001). They also showed reduced thoracic and lumbar flexibility (ΔLL = 3.4 vs 37.1°; ΔTK = -1.7 vs 9.4° in controls, p<0.001). ASD-hyperTK showed a decreased PT while sitting (28.9 vs 34.4° in controls, p<0.001); they tended to decrease their LL and TK but could not reach values for controls (ΔLL = 22.8 vs 37.1° and ΔTK = 5.2 vs 9.4°, p<0.001). The ASD-front had normal standing and sitting postures. ΔSVA and ΔLL were negatively correlated with the physical component scale (PCS of SF36) and ODI (r = -0.39 and r = -0.46, respectively). Conclusion Patients with ASD present with different spinopelvic postures and adaptations from standing to sitting positions, with those having sagittal malalignment most affected. In addition, changes in standing and sitting postures were related to HRQOL outcomes. Therefore, surgeons should consider patient sitting adaptations in surgical planning and spinal fusion. Future studies on ASD should evaluate whether physical therapy or spinal surgery can improve sitting posture and QOL, especially for those with high SVA or PT.

2.
Eur Spine J ; 31(11): 3069-3080, 2022 11.
Article in English | MEDLINE | ID: mdl-36028589

ABSTRACT

PURPOSE: To evaluate 3D kinematic alterations during gait in Adult Spinal Deformity (ASD) subjects with different deformity presentations. METHODS: One hundred nineteen primary ASD (51 ± 19y, 90F), age and sex-matched to 60 controls, underwent 3D gait analysis with subsequent calculation of 3D lower limb, trunk and segmental spine kinematics as well as the gait deviation index (GDI). ASD were classified into three groups: 51 with sagittal malalignment (ASD-Sag: SVA > 50 mm, PT > 25°, and/or PI-LL > 10°), 28 with only frontal deformity (ASD-Front: Cobb > 20°) and 40 with only hyperkyphosis (ASD-HyperTK: TK > 60°). Kinematics were compared between groups. RESULTS: ASD-Sag had a decreased pelvic mobility compared to controls with a decreased ROM of hips (38 vs. 45°) and knees (51 vs. 61°). Furthermore, ASD-Sag exhibited a decreased walking speed (0.8 vs. 1.2 m/s) and GDI (80 vs. 95, all p < 0.05) making them more prone to falls. ASD-HyperTK showed similar patterns but in a less pronounced way. ASD-Front had normal walking patterns. GDI, knee flex/extension and walking speed were significantly associated with SVA and PT (r = 0.30-0.65). CONCLUSION: Sagittal spinal malalignment seems to be the driver of gait alterations in ASD. Patients with higher GT, SVA, PT or PI-LL tended to walk slower, with shorter steps in order to maintain stability with a limited flexibility in the pelvis, hips and knees. These changes were found to a lesser extent in ASD with only hyperkyphosis but not in those with only frontal deformity. 3D gait analysis is an objective tool to evaluate functionality in ASD patients depending on their type of spinal deformity. LEVEL OF EVIDENCE I: Diagnostic: individual cross-sectional studies with consistently applied reference standard and blinding.


Subject(s)
Kyphosis , Adult , Humans , Biomechanical Phenomena , Cross-Sectional Studies , Gait , Spine , Retrospective Studies
3.
Spine Deform ; 10(3): 509-514, 2022 05.
Article in English | MEDLINE | ID: mdl-34817848

ABSTRACT

PURPOSE: Investigate the axial plane deformity in the scoliotic segment and its relationship to the deformity in the frontal and sagittal planes. METHODS: Two hundred subjects with AIS (Cobb ≥ 20°) underwent low dose biplanar X-rays with 3D reconstruction of the spine and pelvis. All structural curves were considered and were distributed as follows: 142 thoracic (T), 70 thoracolumbar (TL), and 47 lumbar curves (L). Common 3D spino-pelvic and scoliosis parameters were collected such as: frontal Cobb; torsion index (TI); hypokyphosis/lordosis index (HI). Parameters were compared between each type of curvature and correlations were investigated between the 3 planes. RESULTS: Frontal Cobb was higher in all T (45 ± 19°) and TL (41 ± 15°) curves compared to L curves (35 ± 14°, p = 0.004). TI was higher in T curves when compared to TL and L curves (TI: 15 ± 8°, 9 ± 6°, 7 ± 5°, p < 0.001). HI was similar between curve types. T curves showed significant correlations between the 3 planes: Cobb vs. TI (r = 0.76), Cobb vs. HI (r = - 0.54) and HI vs. TI (r = - 0.42). The axial plane deformity was related to the frontal deformity and the type of curvature (adjusted-R2 = 0.6). CONCLUSION: Beside showing the most severe deformity frontally and axially compared to TL and L curves, the T curves showed strong correlations between the 3 planes of the deformity. Moreover, this study showed that the axial plane deformity cannot be fully determined by the frontal and sagittal deformities, which highlights the importance of 3D assessment in the setting of AIS.


Subject(s)
Kyphosis , Lordosis , Scoliosis , Adolescent , Humans , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Scoliosis/diagnostic imaging , Scoliosis/surgery , Thoracic Vertebrae/diagnostic imaging , Thoracic Vertebrae/surgery
4.
Gait Posture ; 88: 203-209, 2021 07.
Article in English | MEDLINE | ID: mdl-34118744

ABSTRACT

BACKGROUND: Adults with spinal deformity (ASD) are known to have postural malalignment affecting their quality of life. Classical evaluation and follow-up are usually based on full-body static radiographs and health related quality of life questionnaires. Despite being an essential daily life activity, formal gait assessment lacks in clinical practice. RESEARCH QUESTION: What are the main alterations in gait kinematics of ASD and their radiological determinants? METHODS: 52 ASD and 63 control subjects underwent full-body 3D gait analysis with calculation of joint kinematics and full-body biplanar X-rays with calculation of 3D postural parameters. Kinematics and postural parameters were compared between groups. Determinants of gait alterations among postural radiographic parameters were explored. RESULTS: ASD had increased sagittal vertical axis (SVA:34 ±â€¯59 vs -5 ±â€¯20 mm), pelvic tilt (PT:19 ±â€¯13 vs 11 ±â€¯6°) and frontal Cobb (25 ±â€¯21 vs 4 ±â€¯6°) compared to controls (all p < 0.001). ASD displayed decrease walking speed (0.9 ±â€¯0.3 vs 1.2 ±â€¯0.2 m/s), step length (0.58 ±â€¯0.11 vs 0.64 ±â€¯0.07 m) and increased single support (0.45 ±â€¯0.05 vs 0.42 ±â€¯0.04 s). ASD walked with decreased hip extension in stance (-3 ±â€¯10 vs -7 ±â€¯8°), increased knee flexion at initial contact and in stance (10 ±â€¯11 vs 5 ±â€¯10° and 19 ±â€¯7 vs 16 ±â€¯8° respectively), and decreased knee flexion/extension ROM (55 ±â€¯9 vs 59 ±â€¯7°). ASD had increased trunk flexion (12 ±â€¯12 vs 6 ±â€¯11°) and reduced dynamic lumbar lordosis (-11 ±â€¯12 vs -15 ±â€¯7°, all p < 0.001). Sagittal knee ROM, walking speed and step length were negatively determined by SVA; lack of lumbar lordosis during gait was negatively determined by radiological lumbar lordosis. SIGNIFICANCE: Static compensations in ASD persist during gait, where they exhibit a flexed attitude at the trunk, hips and knees, reduced hip and knee mobility and loss of dynamic lordosis. ASD walked at a slower pace with increased single and double support times that might contribute to their gait stability. These dynamic discrepancies were strongly related to static sagittal malalignment.


Subject(s)
Lordosis , Quality of Life , Adult , Biomechanical Phenomena , Gait , Humans , Retrospective Studies , Walking
5.
Eur Spine J ; 30(9): 2495-2503, 2021 09.
Article in English | MEDLINE | ID: mdl-33638719

ABSTRACT

PURPOSE: To explore 3D hip orientation in standing position in subjects with adult spinal deformity (ASD) presenting with different levels of compensatory mechanisms. METHODS: Subjects with ASD (n = 159) and controls (n = 68) underwent full-body biplanar X-rays with the calculation of 3D spinopelvic, postural and hip parameters. ASD subjects were grouped as ASD with knee flexion (ASD-KF) if they compensated by flexing their knees (knee flexion ≥ 5°), and ASD with knee extension (ASD-KE) otherwise (knee flexion < 5°). Spinopelvic, postural and hip parameters were compared between the three groups. Univariate and multivariate analyses were then computed between spinopelvic and hip parameters. RESULTS: ASD-KF had higher SVA (67 ± 66 mm vs. 2 ± 33 mm and 11 ± 21 mm), PT (27 ± 14° vs. 18 ± 9° and 11 ± 7°) and PI-LL mismatch (20 ± 26° vs - 1 ± 18° and - 13 ± 10°) when compared to ASD-KE and controls (all p < 0.05). ASD-KF also had a more tilted (34 ± 11° vs. 28 ± 9° and 26 ± 7°), anteverted (24 ± 6° vs. 20 ± 5° and 18 ± 4°) and abducted (59 ± 6° vs. 57 ± 4° and 56 ± 4°) acetabulum, with a higher posterior coverage (100 ± 6° vs. 97 ± 7° for ASD-KE) when compared to ASD-KE and controls (all p < 0.05). The main determinants of acetabular tilt, acetabular abduction and anterior acetabular coverage were PT, SVA and LL (adjusted R2 [0.12; 0.5]). CONCLUSIONS: ASD subjects compensating with knee flexion have altered hip orientation, characterized by increased posterior coverage (acetabular anteversion, tilt and posterior coverage) and decreased anterior coverage which can together lead to posterior femoro-acetabular impingement, thus limiting pelvic retroversion. This underlying mechanism could be potentially involved in the hip-spine syndrome.


Subject(s)
Acetabulum , Posture , Adult , Humans , Pelvis/diagnostic imaging , Retrospective Studies , Spine/diagnostic imaging
6.
Front Bioeng Biotechnol ; 9: 751193, 2021.
Article in English | MEDLINE | ID: mdl-35096787

ABSTRACT

Adults with spinal deformity (ASD) are known to have spinal malalignment affecting their quality of life and daily life activities. While walking kinematics were shown to be altered in ASD, other functional activities are yet to be evaluated such as sitting and standing, which are essential for patients' autonomy and quality of life perception. In this cross-sectional study, 93 ASD subjects (50 ± 20 years; 71 F) age and sex matched to 31 controls (45 ± 15 years; 18 F) underwent biplanar radiographic imaging with subsequent calculation of standing radiographic spinopelvic parameters. All subjects filled HRQOL questionnaires such as SF36 and ODI. ASD were further divided into 34 ASD-sag (with PT > 25° and/or SVA >5 cm and/or PI-LL >10°), 32 ASD-hyperTK (with only TK >60°), and 27 ASD-front (with only frontal malalignment: Cobb >20°). All subjects underwent 3D motion analysis during the sit-to-stand and stand-to-sit movements. The range of motion (ROM) and mean values of pelvis, lower limbs, thorax, head, and spinal segments were calculated on the kinematic waveforms. Kinematics were compared between groups and correlations to radiographic and HRQOL scores were computed. During sit-to-stand and stand-to-sit movements, ASD-sag had decreased pelvic anteversion (12.2 vs 15.2°), hip flexion (53.0 vs 62.2°), sagittal mobility in knees (87.1 vs 93.9°), and lumbar mobility (L1L3-L3L5: -9.1 vs -6.8°, all p < 0.05) compared with controls. ASD-hyperTK showed increased dynamic lordosis (L1L3-L3L5: -9.1 vs -6.8°), segmental thoracic kyphosis (T2T10-T10L1: 32.0 vs 17.2°, C7T2-T2T10: 30.4 vs 17.7°), and thoracolumbar extension (T10L1-L1L3: -12.4 vs -5.5°, all p < 0.05) compared with controls. They also had increased mobility at the thoracolumbar and upper-thoracic spine. Both ASD-sag and ASD-hyperTK maintained a flexed trunk, an extended head along with an increased trunk and head sagittal ROM. Kinematic alterations were correlated to radiographic parameters and HRQOL scores. Even after controlling for demographic factors, dynamic trunk flexion was determined by TK and PI-LL mismatch (adj. R 2 = 0.44). Lumbar sagittal ROM was determined by PI-LL mismatch (adj. R 2 = 0.13). In conclusion, the type of spinal deformity in ASD seems to determine the strategy used for sitting and standing. Future studies should evaluate whether surgical correction of the deformity could restore sitting and standing kinematics and ultimately improve quality of life.

SELECTION OF CITATIONS
SEARCH DETAIL
...