Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
ACS Infect Dis ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38876983

ABSTRACT

Francisella tularensis is a Gram-negative facultative intracellular bacterial pathogen that is classified by the Centers for Disease Control and Prevention as a Tier 1 Select Agent. F. tularensis infection causes the disease tularemia, also known as rabbit fever. Treatment of tularemia is limited to few effective antibiotics which are associated with high relapse rates, toxicity, and potential emergence of antibiotic-resistant strains. Consequently, new therapeutic options for tularemia are needed. Through screening a focused chemical library and subsequent structure-activity relationship studies, we have discovered a new and potent inhibitor of intracellular growth of Francisella tularensis, D8-03. Importantly, D8-03 effectively reduces bacterial burden in mice infected with F. tularensis. Preliminary mechanistic investigations suggest that D8-03 works through a potentially novel host-dependent mechanism and serves as a promising lead compound for further development.

2.
Infect Immun ; 90(8): e0015522, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35916521

ABSTRACT

Francisella tularensis is a zoonotic, facultative intracellular bacterial pathogen that replicates in a variety of cell types during infection. Following entry into the cell and phagosome escape, the bacterium replicates rapidly in the cytoplasm. F. tularensis intracellular growth depends on the availability of metabolizable essential nutrients to support replication. However, the mechanism by which metabolizable nutrients become available to the bacterium in the intracellular environment is not fully understood. We found that F. tularensis-infected cells had significantly smaller and fewer lipid droplets than uninfected cells. Inhibition of triacylglycerol degradation significantly reduced bacterial growth, whereas inhibition of triacylglycerol formation did not reduce bacterial growth, suggesting that triacylglycerols sequestered within lipid droplets are important nutrient sources for F. tularensis. We found that F. tularensis-infected cells had increased activation of lipolysis and the upstream regulatory protein AMP protein kinase (AMPK). These data suggest that F. tularensis exploits AMPK activation and lipid metabolism to use host-derived nutrients. Finally, we found that AMPK activation is correlated with an increased bacterial burden, which suggests that it is a host-mediated response to nutrient starvation that results from increased bacterial replication. Altogether, we conclude that F. tularensis exploits AMPK activation to access nutrients sequestered in lipid droplets, specifically glycerol and fatty acids, to undergo efficient bacterial replication and cause successful infection.


Subject(s)
Francisella tularensis , Tularemia , AMP-Activated Protein Kinases/metabolism , Humans , Lipolysis , Nutrients , Phagosomes/microbiology , Triglycerides/metabolism , Tularemia/microbiology
3.
Elife ; 82019 04 24.
Article in English | MEDLINE | ID: mdl-31017571

ABSTRACT

Previously, we found that phagocytic cells ingest bacteria directly from the cytosol of infected cells without killing the initially infected cell (Steele et al., 2016). Here, we explored the events immediately following bacterial transfer. Francisella tularensis bacteria acquired from infected cells were found within double-membrane vesicles partially composed from the donor cell plasma membrane. As with phagosomal escape, the F. tularensis Type VI Secretion System (T6SS) was required for vacuole escape. We constructed a T6SS inducible strain and established conditions where this strain is trapped in vacuoles of cells infected through bacterial transfer. Using this strain we identified bacterial transfer events in the lungs of infected mice, demonstrating that this process occurs in infected animals. These data and electron microscopy analysis of the transfer event revealed that macrophages acquire cytoplasm and membrane components of other cells through a process that is distinct from, but related to phagocytosis.


Subject(s)
Cytoplasmic Vesicles/microbiology , Endocytosis , Francisella tularensis/growth & development , Phagocytes/microbiology , Phagocytes/physiology , Animals , Disease Models, Animal , Lung/microbiology , Lung/pathology , Mice , Tularemia/microbiology , Tularemia/pathology
4.
mBio ; 9(6)2018 11 20.
Article in English | MEDLINE | ID: mdl-30459188

ABSTRACT

Francisella tularensis is a Gram-negative, facultative, intracellular bacterial pathogen and one of the most virulent organisms known. A hallmark of F. tularensis pathogenesis is the bacterium's ability to replicate to high densities within the cytoplasm of infected cells in over 250 known host species, including humans. This demonstrates that F. tularensis is adept at modulating its metabolism to fluctuating concentrations of host-derived nutrients. The precise metabolic pathways and nutrients utilized by F. tularensis during intracellular growth, however, are poorly understood. Here, we use systematic mutational analysis to identify the carbon catabolic pathways and host-derived nutrients required for F. tularensis intracellular replication. We demonstrate that the glycolytic enzyme phosphofructokinase (PfkA), and thus glycolysis, is dispensable for F. tularensis SchuS4 virulence, and we highlight the importance of the gluconeogenic enzyme fructose 1,6-bisphosphatase (GlpX). We found that the specific gluconeogenic enzymes that function upstream of GlpX varied based on infection model, indicating that F. tularensis alters its metabolic flux according to the nutrients available within its replicative niche. Despite this flexibility, we found that glutamate dehydrogenase (GdhA) and glycerol 3-phosphate (G3P) dehydrogenase (GlpA) are essential for F. tularensis intracellular replication in all infection models tested. Finally, we demonstrate that host cell lipolysis is required for F. tularensis intracellular proliferation, suggesting that host triglyceride stores represent a primary source of glycerol during intracellular replication. Altogether, the data presented here reveal common nutritional requirements for a bacterium that exhibits characteristic metabolic flexibility during infection.IMPORTANCE The widespread onset of antibiotic resistance prioritizes the need for novel antimicrobial strategies to prevent the spread of disease. With its low infectious dose, broad host range, and high rate of mortality, F. tularensis poses a severe risk to public health and is considered a potential agent for bioterrorism. F. tularensis reaches extreme densities within the host cell cytosol, often replicating 1,000-fold in a single cell within 24 hours. This remarkable rate of growth demonstrates that F. tularensis is adept at harvesting and utilizing host cell nutrients. However, like most intracellular pathogens, the types of nutrients utilized by F. tularensis and how they are acquired is not fully understood. Identifying the essential pathways for F. tularensis replication may reveal new therapeutic strategies for targeting this highly infectious pathogen and may provide insight for improved targeting of intracellular pathogens in general.


Subject(s)
Carbon/metabolism , Cytoplasm/microbiology , Francisella tularensis/growth & development , Metabolic Networks and Pathways , Animals , DNA Replication , Female , Francisella tularensis/metabolism , Fructose-Bisphosphatase/metabolism , Gluconeogenesis , Glycolysis , Macrophages/microbiology , Macrophages/physiology , Metabolic Flux Analysis , Mice , Mice, Inbred C57BL , Phosphofructokinases/metabolism , Tularemia/metabolism , Virulence
5.
Cell Host Microbe ; 24(2): 285-295.e8, 2018 08 08.
Article in English | MEDLINE | ID: mdl-30057173

ABSTRACT

Many pathogenic intracellular bacteria manipulate the host phago-endosomal system to establish and maintain a permissive niche. The fate and identity of these intracellular compartments is controlled by phosphoinositide lipids. By mechanisms that have remained undefined, a Francisella pathogenicity island-encoded secretion system allows phagosomal escape and replication of bacteria within host cell cytoplasm. Here we report the discovery that a substrate of this system, outside pathogenicity island A (OpiA), represents a family of wortmannin-resistant bacterial phosphatidylinositol (PI) 3-kinase enzymes with members found in a wide range of intracellular pathogens, including Rickettsia and Legionella spp. We show that OpiA acts on the Francisella-containing phagosome and promotes bacterial escape into the cytoplasm. Furthermore, we demonstrate that the phenotypic consequences of OpiA inactivation are mitigated by endosomal maturation arrest. Our findings suggest that Francisella, and likely other intracellular bacteria, override the finely tuned dynamics of phagosomal PI(3)P in order to promote intracellular survival and pathogenesis.


Subject(s)
Francisella/growth & development , Francisella/pathogenicity , Host-Pathogen Interactions/physiology , Phagosomes/metabolism , Phagosomes/microbiology , Phosphatidylinositol 3-Kinase/metabolism , Animals , Bacterial Proteins/metabolism , Cytoplasm/microbiology , DNA Replication , Disease Models, Animal , Endosomes/microbiology , Female , Francisella/genetics , Genes, Bacterial/genetics , Genomic Islands , HEK293 Cells , HeLa Cells , Humans , Lipid Metabolism , Macrophages/microbiology , Male , Mice , Mice, Inbred C57BL , Phosphatidylinositols/metabolism , RAW 264.7 Cells , Type VI Secretion Systems/metabolism , Virulence Factors/metabolism
6.
PLoS Pathog ; 14(3): e1006907, 2018 03.
Article in English | MEDLINE | ID: mdl-29554137

ABSTRACT

Staphylococcus aureus exhibits many defenses against host innate immunity, including the ability to replicate in the presence of nitric oxide (NO·). S. aureus NO· resistance is a complex trait and hinges on the ability of this pathogen to metabolically adapt to the presence of NO·. Here, we employed deep sequencing of transposon junctions (Tn-Seq) in a library generated in USA300 LAC to define the complete set of genes required for S. aureus NO· resistance. We compared the list of NO·-resistance genes to the set of genes required for LAC to persist within murine skin infections (SSTIs). In total, we identified 168 genes that were essential for full NO· resistance, of which 49 were also required for S. aureus to persist within SSTIs. Many of these NO·-resistance genes were previously demonstrated to be required for growth in the presence of this immune radical. However, newly defined genes, including those encoding SodA, MntABC, RpoZ, proteins involved with Fe-S-cluster repair/homeostasis, UvrABC, thioredoxin-like proteins and the F1F0 ATPase, have not been previously reported to contribute to S. aureus NO· resistance. The most striking finding was that loss of any genes encoding components of the F1F0 ATPase resulted in mutants unable to grow in the presence of NO· or any other condition that inhibits cellular respiration. In addition, these mutants were highly attenuated in murine SSTIs. We show that in S. aureus, the F1F0 ATPase operates in the ATP-hydrolysis mode to extrude protons and contribute to proton-motive force. Loss of efficient proton extrusion in the ΔatpG mutant results in an acidified cytosol. While this acidity is tolerated by respiring cells, enzymes required for fermentation cannot operate efficiently at pH ≤ 7.0 and the ΔatpG mutant cannot thrive. Thus, S. aureus NO· resistance requires a mildly alkaline cytosol, a condition that cannot be achieved without an active F1F0 ATPase enzyme complex.


Subject(s)
Bacterial Proteins/genetics , Immunity, Innate/immunology , Nitric Oxide/pharmacology , Staphylococcal Skin Infections/immunology , Staphylococcus aureus/drug effects , Virulence/immunology , Animals , Gene Expression Regulation, Bacterial , Gene Library , Immunity, Innate/drug effects , Immunity, Innate/genetics , Mice , Mice, Inbred C57BL , Staphylococcal Skin Infections/genetics , Staphylococcal Skin Infections/microbiology , Staphylococcus aureus/immunology , Virulence/drug effects , Virulence/genetics
7.
Elife ; 52016 Jan 23.
Article in English | MEDLINE | ID: mdl-26802627

ABSTRACT

Macrophages are myeloid-derived phagocytic cells and one of the first immune cell types to respond to microbial infections. However, a number of bacterial pathogens are resistant to the antimicrobial activities of macrophages and can grow within these cells. Macrophages have other immune surveillance roles including the acquisition of cytosolic components from multiple types of cells. We hypothesized that intracellular pathogens that can replicate within macrophages could also exploit cytosolic transfer to facilitate bacterial spread. We found that viable Francisella tularensis, as well as Salmonella enterica bacteria transferred from infected cells to uninfected macrophages along with other cytosolic material through a transient, contact dependent mechanism. Bacterial transfer occurred when the host cells exchanged plasma membrane proteins and cytosol via a trogocytosis related process leaving both donor and recipient cells intact and viable. Trogocytosis was strongly associated with infection in mice, suggesting that direct bacterial transfer occurs by this process in vivo.


Subject(s)
Cell Communication , Cytoplasm/microbiology , Francisella tularensis/isolation & purification , Immunological Synapses/microbiology , Macrophages/immunology , Macrophages/microbiology , Salmonella enterica/isolation & purification , Animals , Cell Line , Epithelial Cells/microbiology , Epithelial Cells/physiology , Mice
8.
Article in English | MEDLINE | ID: mdl-26106587

ABSTRACT

Following entry into host cells intracellular pathogens must simultaneously evade innate host defense mechanisms and acquire energy and anabolic substrates from the nutrient-limited intracellular environment. Most of the potential intracellular nutrient sources are stored within complex macromolecules that are not immediately accessible by intracellular pathogens. To obtain nutrients for proliferation, intracellular pathogens must compete with the host cell for newly-imported simple nutrients or degrade host nutrient storage structures into their constituent components (fatty acids, carbohydrates, and amino acids). It is becoming increasingly evident that intracellular pathogens have evolved a wide variety of strategies to accomplish this task. One recurrent microbial strategy is to exploit host degradative processes that break down host macromolecules into simple nutrients that the microbe can use. Herein we focus on how a subset of bacterial, viral, and eukaryotic pathogens leverage the host process of autophagy to acquire nutrients that support their growth within infected cells.


Subject(s)
Autophagy , Bacterial Physiological Phenomena , Eukaryotic Cells/physiology , Host-Pathogen Interactions , Virus Physiological Phenomena , Animals , Humans
9.
PLoS One ; 9(12): e115225, 2014.
Article in English | MEDLINE | ID: mdl-25506936

ABSTRACT

The second-generation antipsychotic olanzapine is effective in reducing psychotic symptoms but can cause extreme weight gain in human patients. We investigated the role of the gut microbiota in this adverse drug effect using a mouse model. First, we used germ-free C57BL/6J mice to demonstrate that gut bacteria are necessary and sufficient for weight gain caused by oral delivery of olanzapine. Second, we surveyed fecal microbiota before, during, and after treatment and found that olanzapine potentiated a shift towards an "obesogenic" bacterial profile. Finally, we demonstrated that olanzapine has antimicrobial activity in vitro against resident enteric bacterial strains. These results collectively provide strong evidence for a mechanism underlying olanzapine-induced weight gain in mouse and a hypothesis for clinical translation in human patients.


Subject(s)
Antipsychotic Agents/toxicity , Benzodiazepines/toxicity , Gastrointestinal Microbiome/drug effects , Weight Gain/drug effects , Animals , Female , Mice , Olanzapine
10.
Infect Immun ; 82(6): 2504-10, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24686053

ABSTRACT

The adaptive immune response to Francisella tularensis is dependent on the route of inoculation. Intradermal inoculation with the F. tularensis live vaccine strain (LVS) results in a robust Th1 response in the lungs, whereas intranasal inoculation produces fewer Th1 cells and instead many Th17 cells. Interestingly, bacterial loads in the lungs are similar early after inoculation by these two routes. We hypothesize that the adaptive immune response is influenced by local events in the lungs, such as the type of cells that are first infected with Francisella. Using fluorescence-activated cell sorting, we identified alveolar macrophages as the first cell type infected in the lungs of mice intranasally inoculated with F. novicida U112, LVS, or F. tularensis Schu S4. Following bacterial dissemination from the skin to the lung, interstitial macrophages or neutrophils are infected. Overall, we identified the early interactions between Francisella and the host following two different routes of inoculation.


Subject(s)
Francisella tularensis/immunology , Host-Pathogen Interactions/immunology , Lung/microbiology , Tularemia/immunology , Adaptive Immunity , Administration, Intranasal , Animals , Bacterial Load , Colony Count, Microbial , Disease Models, Animal , Lung/immunology , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Neutrophils/microbiology , Pulmonary Alveoli/microbiology , Tularemia/microbiology
11.
PLoS One ; 9(2): e88194, 2014.
Article in English | MEDLINE | ID: mdl-24505427

ABSTRACT

Francisella tularensis is a highly infectious bacterial pathogen that invades and replicates within numerous host cell types. After uptake, F. tularensis bacteria escape the phagosome, replicate within the cytosol, and suppress cytokine responses. However, the mechanisms employed by F. tularensis to thrive within host cells are mostly unknown. Potential F. tularensis mutants involved in host-pathogen interactions are typically discovered by negative selection screens for intracellular replication or virulence. Mutants that fulfill these criteria fall into two categories: mutants with intrinsic intracellular growth defects and mutants that fail to modify detrimental host cell processes. It is often difficult and time consuming to discriminate between these two possibilities. We devised a method to functionally trans-complement and thus identify mutants that fail to modify the host response. In this assay, host cells are consistently and reproducibly infected with two different F. tularensis strains by physically tethering the bacteria to antibody-coated beads. To examine the efficacy of this protocol, we tested phagosomal escape, cytokine suppression, and intracellular replication for F. tularensis ΔripA and ΔpdpC. ΔripA has an intracellular growth defect that is likely due to an intrinsic defect and fails to suppress IL-1ß secretion. In the co-infection model, ΔripA was unable to replicate in the host cell when wild-type bacteria infected the same cell, but cytokine suppression was rescued. Therefore, ΔripA intracellular growth is due to an intrinsic bacterial defect while cytokine secretion results from a failed host-pathogen interaction. Likewise, ΔpdpC is deficient for phagosomal escape, intracellular survival and suppression of IL-1ß secretion. Wild-type bacteria that entered through the same phagosome as ΔpdpC rescued all of these phenotypes, indicating that ΔpdpC failed to properly manipulate the host. In summary, functional trans-complementation using bead-bound bacteria co-infections is a method to rapidly identify mutants that fail to modify a host response. Francisella tularensis is a facultative intracellular bacterial pathogen and is the causative agent of the disease tularemia. F. tularensis enters host cells through phagocytosis, escapes the phagosome, and replicates in the host cell cytosol while suppressing cytokine secretion [1]-[4]. Although substantial progress has been made in understanding the intracellular life cycle of F. tularensis, the F. tularensis proteins responsible for manipulating many host cell pathways are unknown. Identifying novel host-pathogen effector proteins is difficult because there is no rapid method to reliably distinguish between bacterial proteins that modify host processes and proteins that are involved in bacterial processes that are required for the bacteria to survive or replicate in the intracellular environment. The ability to identify mutants that are deficient for host-pathogen interactions is important because it can aid in prioritizing the investigation of genes of interest and in downstream experimental design. Moreover, certain mutant phenotypes, such as decreased phagosomal escape, hinder investigation of other potential phenotypes. A method to specifically complement these phenotypes would allow for further characterizations of certain F. tularensis mutants. Thus we sought to develop a method to easily identify and functionally complement mutants that are deficient for interactions with the host.


Subject(s)
Francisella tularensis/genetics , Francisella tularensis/physiology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/physiology , Tularemia/genetics , Tularemia/microbiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Line , Coinfection/genetics , Coinfection/microbiology , Cytosol/metabolism , Cytosol/microbiology , Cytosol/physiology , Francisella tularensis/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Life Cycle Stages/genetics , Life Cycle Stages/physiology , Macrophages/metabolism , Macrophages/microbiology , Macrophages/physiology , Mice , Mice, Inbred C57BL , Mutation/genetics , Phagocytosis/genetics , Phagocytosis/physiology , Phagosomes/genetics , Phagosomes/metabolism , Phagosomes/microbiology , Phenotype , Tularemia/metabolism , Tularemia/physiopathology , Virulence/genetics , Virulence/physiology
12.
BMC Microbiol ; 14: 336, 2014 Dec 31.
Article in English | MEDLINE | ID: mdl-25551578

ABSTRACT

BACKGROUND: Francisella tularensis is a Gram-negative bacterium that infects hundreds of species including humans, and has evolved to grow efficiently within a plethora of cell types. RipA is a conserved membrane protein of F. tularensis, which is required for growth inside host cells. As a means to determine RipA function we isolated and mapped independent extragenic suppressor mutants in ∆ripA that restored growth in host cells. Each suppressor mutation mapped to one of two essential genes, lpxA or glmU, which are involved in lipid A synthesis. We repaired the suppressor mutation in lpxA (S102, LpxA T36N) and the mutation in glmU (S103, GlmU E57D), and demonstrated that each mutation was responsible for the suppressor phenotype in their respective strains. We hypothesize that the mutation in S102 altered the stability of LpxA, which can provide a clue to RipA function. LpxA is an UDP-N-acetylglucosamine acyltransferase that catalyzes the transfer of an acyl chain from acyl carrier protein (ACP) to UDP-N-acetylglucosamine (UDP-GlcNAc) to begin lipid A synthesis. RESULTS: LpxA was more abundant in the presence of RipA. Induced expression of lpxA in the ΔripA strain stopped bacterial division. The LpxA T36N S102 protein was less stable and therefore less abundant than wild type LpxA protein. CONCLUSION: These data suggest RipA functions to modulate lipid A synthesis in F. tularensis as a way to adapt to the host cell environment by interacting with LpxA.


Subject(s)
Bacterial Proteins/genetics , Mutation/genetics , Suppression, Genetic/genetics , Acyltransferases/genetics , Francisella tularensis/genetics , Lipid A/genetics
14.
PLoS Pathog ; 9(8): e1003562, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23966861

ABSTRACT

Francisella tularensis is a highly virulent intracellular pathogen that invades and replicates within numerous host cell types including macrophages, hepatocytes and pneumocytes. By 24 hours post invasion, F. tularensis replicates up to 1000-fold in the cytoplasm of infected cells. To achieve such rapid intracellular proliferation, F. tularensis must scavenge large quantities of essential carbon and energy sources from the host cell while evading anti-microbial immune responses. We found that macroautophagy, a eukaryotic cell process that primarily degrades host cell proteins and organelles as well as intracellular pathogens, was induced in F. tularensis infected cells. F. tularensis not only survived macroautophagy, but optimal intracellular bacterial growth was found to require macroautophagy. Intracellular growth upon macroautophagy inhibition was rescued by supplying excess nonessential amino acids or pyruvate, demonstrating that autophagy derived nutrients provide carbon and energy sources that support F. tularensis proliferation. Furthermore, F. tularensis did not require canonical, ATG5-dependent autophagy pathway induction but instead induced an ATG5-independent autophagy pathway. ATG5-independent autophagy induction caused the degradation of cellular constituents resulting in the release of nutrients that the bacteria harvested to support bacterial replication. Canonical macroautophagy limits the growth of several different bacterial species. However, our data demonstrate that ATG5-independent macroautophagy may be beneficial to some cytoplasmic bacteria by supplying nutrients to support bacterial growth.


Subject(s)
Amino Acids/metabolism , Autophagy , Francisella tularensis/growth & development , Macrophages/microbiology , Microtubule-Associated Proteins/physiology , Pyruvic Acid/metabolism , Tularemia/microbiology , Animals , Apoptosis Regulatory Proteins/antagonists & inhibitors , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Autophagy-Related Protein 5 , Beclin-1 , Blotting, Western , Cells, Cultured , Embryo, Mammalian/metabolism , Embryo, Mammalian/microbiology , Embryo, Mammalian/pathology , Fibroblasts/metabolism , Fibroblasts/microbiology , Fibroblasts/pathology , Francisella tularensis/genetics , Francisella tularensis/pathogenicity , Macrophages/metabolism , Macrophages/pathology , Mice , Microscopy, Fluorescence , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tularemia/genetics , Tularemia/pathology
15.
Infect Immun ; 81(6): 2028-42, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23529616

ABSTRACT

Bacterial attenuation is typically thought of as reduced bacterial growth in the presence of constant immune pressure. Infection with Francisella tularensis elicits innate and adaptive immune responses. Several in vivo screens have identified F. tularensis genes necessary for virulence. Many of these mutations render F. tularensis defective for intracellular growth. However, some mutations have no impact on intracellular growth, leading us to hypothesize that these F. tularensis mutants are attenuated because they induce an altered host immune response. We were particularly interested in the F. tularensis LVS (live vaccine strain) clpB (FTL_0094) mutant because this strain was attenuated in pneumonic tularemia yet induced a protective immune response. The attenuation of LVS clpB was not due to an intracellular growth defect, as LVS clpB grew similarly to LVS in primary bone marrow-derived macrophages and a variety of cell lines. We therefore determined whether LVS clpB induced an altered immune response compared to that induced by LVS in vivo. We found that LVS clpB induced proinflammatory cytokine production in the lung early after infection, a process not observed during LVS infection. LVS clpB provoked a robust adaptive immune response similar in magnitude to that provoked by LVS but with increased gamma interferon (IFN-γ) and interleukin-17A (IL-17A) production, as measured by mean fluorescence intensity. Altogether, our results indicate that LVS clpB is attenuated due to altered host immunity and not an intrinsic growth defect. These results also indicate that disruption of a nonessential gene(s) that is involved in bacterial immune evasion, like F. tularensis clpB, can serve as a model for the rational design of attenuated vaccines.


Subject(s)
Bacterial Vaccines/immunology , Francisella tularensis/genetics , Tularemia/prevention & control , Animals , Cell Line , Francisella tularensis/immunology , Francisella tularensis/pathogenicity , Gene Expression Regulation/immunology , Humans , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-17/genetics , Interleukin-17/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes/physiology , Vaccines, Attenuated/immunology , Virulence
16.
Front Microbiol ; 4: 16, 2013.
Article in English | MEDLINE | ID: mdl-23403609

ABSTRACT

Francisella tularensis is the causative agent of tularemia. We have previously shown that infection with F. tularensis Live Vaccine Strain (LVS) induces macrophages to synthesize prostaglandin E(2) (PGE(2)). Synthesis of PGE(2) by F. tularensis infected macrophages results in decreased T cell proliferation in vitro and increased bacterial survival in vivo. Although we understand some of the biological consequences of F. tularensis induced PGE(2) synthesis by macrophages, we do not understand the cellular pathways (neither host nor bacterial) that result in up-regulation of the PGE(2) biosynthetic pathway in F. tularensis infected macrophages. We took a genetic approach to begin to understand the molecular mechanisms of bacterial induction of PGE(2) synthesis from infected macrophages. To identify F. tularensis genes necessary for the induction of PGE(2) in primary macrophages, we infected cells with individual mutants from the closely related strain F. tularensis subspecies novicida U112 (U112) two allele mutant library. Twenty genes were identified that when disrupted resulted in U112 mutant strains unable to induce the synthesis of PGE(2) by infected macrophages. Fourteen of the genes identified are located within the Francisella pathogenicity island (FPI). Genes in the FPI are required for F. tularensis to escape from the phagosome and replicate in the cytosol, which might account for the failure of U112 with transposon insertions within the FPI to induce PGE(2). This implies that U112 mutant strains that do not grow intracellularly would also not induce PGE(2). We found that U112 clpB::Tn grows within macrophages yet fails to induce PGE(2), while U112 pdpA::Tn does not grow yet does induce PGE(2). We also found that U112 iglC::Tn neither grows nor induces PGE(2). These findings indicate that there is dissociation between intracellular growth and the ability of F. tularensis to induce PGE(2) synthesis. These mutants provide a critical entrée into the pathways used in the host for PGE(2) induction.

17.
J Bacteriol ; 195(5): 965-76, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23243306

ABSTRACT

Pantothenate, commonly referred to as vitamin B(5), is an essential molecule in the metabolism of living organisms and forms the core of coenzyme A. Unlike humans, some bacteria and plants are capable of de novo biosynthesis of pantothenate, making this pathway a potential target for drug development. Francisella tularensis subsp. tularensis Schu S4 is a zoonotic bacterial pathogen that is able to synthesize pantothenate but is lacking the known ketopantoate reductase (KPR) genes, panE and ilvC, found in the canonical Escherichia coli pathway. Described herein is a gene encoding a novel KPR, for which we propose the name panG (FTT1388), which is conserved in all sequenced Francisella species and is the sole KPR in Schu S4. Homologs of this KPR are present in other pathogenic bacteria such as Enterococcus faecalis, Coxiella burnetii, and Clostridium difficile. Both the homologous gene from E. faecalis V583 (EF1861) and E. coli panE functionally complemented Francisella novicida lacking any KPR. Furthermore, panG from F. novicida can complement an E. coli KPR double mutant. A Schu S4 ΔpanG strain is a pantothenate auxotroph and was genetically and chemically complemented with panG in trans or with the addition of pantolactone. There was no virulence defect in the Schu S4 ΔpanG strain compared to the wild type in a mouse model of pneumonic tularemia. In summary, we characterized the pantothenate pathway in Francisella novicida and F. tularensis and identified an unknown and previously uncharacterized KPR that can convert 2-dehydropantoate to pantoate, PanG.


Subject(s)
Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Francisella tularensis/enzymology , Pantothenic Acid/biosynthesis , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/metabolism , Animals , Clostridioides difficile/enzymology , Coenzyme A/biosynthesis , Coxiella burnetii/enzymology , Enterococcus faecalis/enzymology , Escherichia coli/enzymology , Francisella tularensis/genetics , Francisella tularensis/metabolism , Mice , Tularemia/microbiology
18.
Appl Environ Microbiol ; 78(19): 6883-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22820330

ABSTRACT

There are a number of genetic tools available for studying Francisella tularensis, the etiological agent of tularemia; however, there is no effective inducible or repressible gene expression system. Here, we describe inducible and repressible gene expression systems for F. tularensis based on the Tet repressor, TetR. For the inducible system, a tet operator sequence was cloned into a modified F. tularensis groESL promoter sequence and carried in a plasmid that constitutively expressed TetR. To monitor regulation the luminescence operon, luxCDABE, was cloned under the hybrid Francisella tetracycline-regulated promoter (FTRp), and transcription was initiated with addition of anhydrotetracycline (ATc), which binds TetR and alleviates TetR association with tetO. Expression levels measured by luminescence correlated with ATc inducer concentrations ranging from 20 to 250 ng ml(-1). In the absence of ATc, luminescence was below the level of detection. The inducible system was also functional during the infection of J774A.1 macrophages, as determined by both luminescence and rescue of a mutant strain with an intracellular growth defect. The repressible system consists of FTRp regulated by a reverse TetR mutant (revTetR), TetR r1.7. Using this system with the lux reporter, the addition of ATc resulted in decreased luminescence, while in the absence of ATc the level of luminescence was not significantly different from that of a construct lacking TetR r1.7. Utilizing both systems, the essentiality of SecA, the protein translocase ATPase, was confirmed, establishing that they can effectively regulate gene expression. These two systems will be invaluable in exploring F. tularensis protein function.


Subject(s)
Francisella tularensis/genetics , Gene Expression Regulation, Bacterial , Genetic Engineering/methods , Transcription Factors/genetics , Animals , Artificial Gene Fusion , Cell Line , Genes, Reporter , Genetics, Microbial/methods , Luminescent Measurements , Luminescent Proteins/analysis , Luminescent Proteins/genetics , Macrophages/microbiology , Mice , Molecular Biology/methods , Plasmids , Promoter Regions, Genetic
19.
J Bacteriol ; 194(6): 1474-84, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22267515

ABSTRACT

Francisella tularensis is a Gram-negative coccobacillus and is the etiological agent of the disease tularemia. Expression of the cytoplasmic membrane protein RipA is required for Francisella replication within macrophages and other cell types; however, the function of this protein remains unknown. RipA is conserved among all sequenced Francisella species, and RipA-like proteins are present in a number of individual strains of a wide variety of species scattered throughout the prokaryotic kingdom. Cross-linking studies revealed that RipA forms homoligomers. Using a panel of RipA-green fluorescent protein and RipA-PhoA fusion constructs, we determined that RipA has a unique topology within the cytoplasmic membrane, with the N and C termini in the cytoplasm and periplasm, respectively. RipA has two significant cytoplasmic domains, one composed roughly of amino acids 1 to 50 and the second flanked by the second and third transmembrane domains and comprising amino acids 104 to 152. RipA functional domains were identified by measuring the effects of deletion mutations, amino acid substitution mutations, and spontaneously arising intragenic suppressor mutations on intracellular replication, induction of interleukin-1ß (IL-1ß) secretion by infected macrophages, and oligomer formation. Results from these experiments demonstrated that each of the cytoplasmic domains and specific amino acids within these domains are required for RipA function.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Francisella tularensis/chemistry , Francisella tularensis/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Amino Acid Substitution , Animals , Cell Line , Cell Membrane/chemistry , Cytoplasm/chemistry , Francisella tularensis/growth & development , Francisella tularensis/pathogenicity , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Interleukin-1beta/metabolism , Macrophages/immunology , Macrophages/microbiology , Mice , Models, Biological , Models, Molecular , Mutagenesis, Site-Directed , Periplasm/chemistry , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Protein Multimerization , Protein Structure, Tertiary , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Deletion , Staining and Labeling/methods , Suppression, Genetic
20.
J Immunol Methods ; 373(1-2): 111-26, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-21872603

ABSTRACT

Epitopes are a hallmark of the antigen specific immune response. The identification and characterization of epitopes is essential for modern immunologic studies, from investigating cellular responses against tumors to understanding host/pathogen interactions especially in the case of bacteria with intracellular residence. Here, we have utilized a novel approach to identify T cell epitopes exploiting the exquisite ability of particulate antigens, in the form of beads, to deliver exogenous antigen to both MHC class I and class II pathways for presentation to T cell hybridomas. In the current study, we coupled this functional assay with two distinct protein expression libraries to develop a methodology for the characterization of T cell epitopes. One set of expression libraries containing single amino acid substitutions in a defined epitope sequence was interrogated to identify epitopes with enhanced T cell stimulation for a MHC class I epitope. The second expression library is comprised of the majority of open reading frames from the intracellular pathogen and potential biowarfare agent, Francisella tularensis. By automating aspects of this technology, we have been able to functionally screen and identify novel T cell epitopes within F. tularensis. We have also expanded upon these studies to generate a novel expression vector that enables immunization of recombinant protein into mice, which has been utilized to facilitate T cell epitope discovery for proteins that are critically linked to Francisella pathogenicity. This methodology should be applicable to a variety of systems and other pathogens.


Subject(s)
Epitopes, T-Lymphocyte/immunology , Epitopes/immunology , Francisella tularensis/immunology , Neoplasms/immunology , Tularemia/immunology , Amino Acid Sequence , Animals , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Cell Line , Epitope Mapping , Epitopes/genetics , Epitopes/metabolism , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/metabolism , Francisella tularensis/genetics , Francisella tularensis/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Hybridomas/immunology , Hybridomas/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Sequence Data , Mutation , Neoplasms/genetics , Neoplasms/metabolism , Peptide Library , Prostate-Specific Antigen/genetics , Prostate-Specific Antigen/immunology , Prostate-Specific Antigen/metabolism , Protein Binding , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tularemia/metabolism , Tularemia/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...