ABSTRACT
Leprosy is present in more than 100 countries, where it remains a major cause of peripheral neuropathy and disability. Attempts to eliminate the disease have faced various obstacles, including characteristics of the causative bacillus Mycobacterium leprae: the long incubation period, limited knowledge about its mode of transmission, and its poor growth on culture media. Fortunately, the leprosy bacillus is sensitive to several antibiotics. The first antibiotic to be widely used for leprosy treatment was dapsone in the 1950s, which had to be taken over several years and was associated with increasing bacterial resistance. Therefore, in 1981, WHO recommended that all registered patients with leprosy should receive combination therapy with three antibiotics: rifampicin, clofazimine, and dapsone. Global implementation of this highly effective multidrug therapy took about 15 years. In 1985, 5·3 million patients were receiving multidrug therapy; by 1991, this figure had decreased to 3·1 million (a decrease of 42%) and, by 2000, to 597 232 (a decrease of almost 90%). This reduction in the number of patients registered for treatment was due to shortening of the treatment regimen and achievement of 100% coverage with multidrug therapy. This achievement, which owed much to WHO and the donors of the multidrug therapy components, prompted WHO in 1991 to set a global target of less than one case per 10 000 population by 2000 to eliminate the disease as a public health problem. All but 15 countries achieved this target. Since 2000, about 250 000 new cases of leprosy have been detected every year. We believe an all-out campaign by a global leprosy coalition is needed to bring that figure down to zero.
Subject(s)
Rifampin/therapeutic use , Clofazimine/therapeutic use , Dapsone/therapeutic use , Drug Therapy, Combination/methods , Disease Eradication , Leprostatic Agents/therapeutic use , Leprosy/prevention & control , Leprosy/drug therapy , Leprosy/transmission , Leprosy/epidemiology , Mycobacterium leprae/drug effectsABSTRACT
Real-time PCR technology has improved molecular diagnostics of many pathogens, but no such test is available for Mycobacterium leprae. In this report we describe the establishment and the pre-clinical evaluation of such an assay. The test achieved a theoretical analytical sensitivity limit of 194 M. leprae cells per skin biopsy specimen and facilitated quantification of mycobacteria in tissue over a range of 54-54,000,000 cells per sample. In punch skin biopsies from 39 untreated Ugandan patients with newly diagnosed leprosy, the clinical diagnosis could be confirmed in 88.9% of multibacillary and 33.3% of paucibacillary (microscopically negative) patients. Real-time detection thus did not increase the clinical sensitivity of PCR as compared to conventional protocols, in spite of its evidently high analytical sensitivity. On the other hand, as still no culture system exists for M. leprae, the assay appears to be a robust tool for detection of the bacterium in selected clinical situations, as well as for quantitation in experimental settings.