Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Biomaterials ; 302: 122298, 2023 11.
Article in English | MEDLINE | ID: mdl-37713762

ABSTRACT

The success of mRNA-based vaccines during the Covid-19 pandemic has highlighted the value of this new platform for vaccine development against infectious disease. However, the CD8+ T cell response remains modest with mRNA vaccines, and these do not induce mucosal immunity, which would be needed to prevent viral spread in the healthy population. To address this drawback, we developed a dendritic cell targeting mucosal vaccination vector, the homopentameric STxB. Here, we describe the highly efficient chemical synthesis of the protein, and its in vitro folding. This straightforward preparation led to a synthetic delivery tool whose biophysical and intracellular trafficking characteristics were largely indistinguishable from recombinant STxB. The chemical approach allowed for the generation of new variants with bioorthogonal handles. Selected variants were chemically coupled to several types of antigens derived from the mucosal viruses SARS-CoV-2 and type 16 human papillomavirus. Upon intranasal administration in mice, mucosal immunity, including resident memory CD8+ T cells and IgA antibodies was induced against these antigens. Our study thereby identifies a novel synthetic antigen delivery tool for mucosal vaccination with an unmatched potential to respond to an urgent medical need.


Subject(s)
CD8-Positive T-Lymphocytes , Pandemics , Mice , Humans , Animals , Vaccination , Vaccines, Synthetic , Antigens , Antibodies, Viral
3.
Nat Commun ; 13(1): 3716, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35778399

ABSTRACT

The COVID-19 pandemic triggered the development of numerous diagnostic tools to monitor infection and to determine immune response. Although assays to measure binding antibodies against SARS-CoV-2 are widely available, more specific tests measuring neutralization activities of antibodies are immediately needed to quantify the extent and duration of protection that results from infection or vaccination. We previously developed a 'Serological Assay based on a Tri-part split-NanoLuc® (SATiN)' to detect antibodies that bind to the spike (S) protein of SARS-CoV-2. Here, we expand on our previous work and describe a reconfigured version of the SATiN assay, called Neutralization SATiN (Neu-SATiN), which measures neutralization activity of antibodies directly from convalescent or vaccinated sera. The results obtained with our assay and other neutralization assays are comparable but with significantly shorter preparation and run time for Neu-SATiN. As the assay is modular, we further demonstrate that Neu-SATiN enables rapid assessment of the effectiveness of vaccines and level of protection against existing SARS-CoV-2 variants of concern and can therefore be readily adapted for emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Luciferases , Membrane Glycoproteins/metabolism , Neutralization Tests , Pandemics , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins
4.
Methods Mol Biol ; 2530: 81-107, 2022.
Article in English | MEDLINE | ID: mdl-35761044

ABSTRACT

Maintaining high, or even sufficient, solubility of every peptide segment in chemical protein synthesis (CPS) remains a critical challenge; insolubility of just a single peptide segment can thwart a total synthesis venture. Multiple approaches have been used to address this challenge, most commonly by employing a chemical tool to temporarily improve peptide solubility. In this chapter, we discuss chemical tools for introducing semipermanent solubilizing sequences (termed helping hands) at the side chains of Lys and Glu residues. We describe the synthesis, incorporation by Fmoc-SPPS, and cleavage conditions for utilizing these two tools. For Lys sites, we discuss the Fmoc-Ddap-OH dimedone-based linker, which is achiral, synthesized in one step, can be introduced directly at primary amines, and is removed using hydroxylamine (or hydrazine). For Glu sites, we detail the new Fmoc-SPPS building block, Fmoc-Glu(AlHx)-OH, which can be prepared in an efficient process over two purifications. Solubilizing sequences are introduced directly on-resin and later cleaved with palladium-catalyzed transfer under aqueous conditions to restore a native Glu side chain. These two chemical tools are straightforward to prepare and implement, and we anticipate continued usage in "difficult" peptide segments following the protocols described herein.


Subject(s)
Peptides , Proteins , Peptides/chemistry , Solubility
5.
Front Immunol ; 13: 1046574, 2022.
Article in English | MEDLINE | ID: mdl-36733389

ABSTRACT

Introduction: Neutrophil extracellular traps (NETs) clear pathogens but may contribute Q8 pathogenically to host inflammatory tissue damage during sepsis. Innovative therapeutic agents targeting NET formation and their potentially harmful collateral effects remain understudied. Methods: We investigated a novel therapeutic agent, neonatal NET-Inhibitory Factor (nNIF), in a mouse model of experimental sepsis - cecal ligation and puncture (CLP). We administered 2 doses of nNIF (1 mg/ kg) or its scrambled peptide control intravenously 4 and 10 hours after CLP treatment and assessed survival, peritoneal fluid and plasma NET formation using the MPO-DNA ELISA, aerobic bacterial colony forming units (CFU) using serial dilution and culture, peritoneal fluid and stool microbiomes using 16S rRNA gene sequencing, and inflammatory cytokine levels using a multiplexed cytokine array. Meropenem (25 mg/kg) treatment served as a clinically relevant treatment for infection. Results: We observed increased 6-day survival rates in nNIF (73%) and meropenem (80%) treated mice compared to controls (0%). nNIF decreased NET formation compared to controls, while meropenem did not impact NET formation. nNIF treatment led to increased peritoneal fluid and plasma bacterial CFUs consistent with loss of NET-mediated extracellular microbial killing, while nNIF treatment alone did not alter the peritoneal fluid and stool microbiomes compared to vehicle-treated CLP mice. nNIF treatment also decreased peritoneal TNF-a inflammatory cytokine levels compared to scrambled peptide control. Furthermore, adjunctive nNIF increased survival in a model of sub-optimal meropenem treatment (90% v 40%) in CLP-treated mice. Discussion: Thus, our data demonstrate that nNIF inhibits NET formation in a translationally relevant mouse model of sepsis, improves survival when given as monotherapy or as an adjuvant with antibiotics, and may play an important protective role in sepsis.


Subject(s)
Extracellular Traps , Sepsis , Mice , Animals , Neutrophils/pathology , Meropenem/pharmacology , RNA, Ribosomal, 16S/genetics , Sepsis/pathology , Cytokines/pharmacology , Receptor Protein-Tyrosine Kinases , Punctures
6.
Bioconjug Chem ; 32(10): 2233-2244, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34619957

ABSTRACT

The scope of proteins accessible to total chemical synthesis via native chemical ligation (NCL) is often limited by slow ligation kinetics. Here we describe Click-Assisted NCL (CAN), in which peptides are incorporated with traceless "helping hand" lysine linkers that enable addition of dibenzocyclooctyne (DBCO) and azide handles. The resulting strain-promoted alkyne-azide cycloaddition (SPAAC) increases their effective concentration to greatly accelerate ligations. We demonstrate that copper(I) protects DBCO from acid-mediated rearrangement during acidic peptide cleavage, enabling direct production of DBCO synthetic peptides. Excitingly, triazole-linked model peptides ligated rapidly and accumulated little side product due to the fast reaction time. Using the E. coli ribosomal subunit L32 as a model protein, we further demonstrate that SPAAC, ligation, desulfurization, and linker cleavage steps can be performed in one pot. CAN is a useful method for overcoming challenging ligations involving sterically hindered junctions. Additionally, CAN is anticipated to be an important stepping stone toward a multisegment, one-pot, templated ligation system.


Subject(s)
Copper , Escherichia coli , Alkynes , Azides , Click Chemistry
7.
Org Biomol Chem ; 19(40): 8821-8829, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34585207

ABSTRACT

Native chemical ligation (NCL) enables the total chemical synthesis of proteins. However, poor peptide segment solubility remains a frequently encountered challenge. Here we introduce a traceless linker that can be temporarily attached to Glu side chains to overcome this problem. This strategy employs a new tool, Fmoc-Glu(AlHx)-OH, which can be directly installed using standard Fmoc-based solid-phase peptide synthesis. The incorporated residue, Glu(AlHx), is stable to a wide range of chemical protein synthesis conditions and is removed through palladium-catalyzed transfer under aqueous conditions. General handling characteristics, such as efficient incorporation, stability and rapid removal were demonstrated through a model peptide modified with Glu(AlHx) and a Lys6 solubilizing tag. Glu(AlHx) was incorporated into a highly insoluble peptide segment during the total synthesis of the bacteriocin AS-48. This challenging peptide was successfully synthesized and folded, and it has comparable antimicrobial activity to the native AS-48. We anticipate widespread use of this easy-to-use, robust linker for the preparation of challenging synthetic peptides and proteins.


Subject(s)
Glutamic Acid
8.
Cell Host Microbe ; 29(9): 1342-1350.e5, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34358433

ABSTRACT

The pathogenesis of infectious diarrheal diseases is largely attributed to enterotoxins that cause dehydration by disrupting intestinal water absorption. We investigated patterns of genetic variation in mammalian guanylate cyclase-C (GC-C), an intestinal receptor targeted by bacterially encoded heat-stable enterotoxins (STa), to determine how host species adapt in response to diarrheal infections. Our phylogenetic and functional analysis of GC-C supports long-standing evolutionary conflict with diarrheal bacteria in primates and bats, with highly variable susceptibility to STa across species. In bats, we further show that GC-C diversification has sparked compensatory mutations in the endogenous uroguanylin ligand, suggesting an unusual scenario of pathogen-driven evolution of an entire signaling axis. Together, these findings suggest that conflicts with diarrheal pathogens have had far-reaching impacts on the evolution of mammalian gut physiology.


Subject(s)
Bacterial Toxins/metabolism , Cyclic GMP-Dependent Protein Kinase Type II/metabolism , Enterotoxins/metabolism , Guanylate Cyclase/metabolism , Natriuretic Peptides/metabolism , Animals , Chiroptera , Cyclic GMP/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Diarrhea/microbiology , Diarrhea/pathology , Enterocytes/metabolism , Enterotoxigenic Escherichia coli/metabolism , Enterotoxigenic Escherichia coli/pathogenicity , Guanylate Cyclase/genetics , Natriuretic Peptides/genetics , Protein Binding , Receptors, Enterotoxin/genetics , Receptors, Enterotoxin/metabolism , Signal Transduction , Sodium-Hydrogen Exchangers/metabolism , Vibrio cholerae/metabolism , Vibrio cholerae/pathogenicity
9.
Curr Opin Chem Biol ; 58: 37-44, 2020 10.
Article in English | MEDLINE | ID: mdl-32745915

ABSTRACT

Native chemical ligation has enabled the chemical synthesis of proteins for a wide variety of applications (e.g., mirror-image proteins). However, inefficiencies of this chemoselective ligation in the context of large or otherwise challenging protein targets can limit the practical scope of chemical protein synthesis. In this review, we focus on recent developments aimed at enhancing and expanding native chemical ligation for challenging protein syntheses. Chemical auxiliaries, use of selenium chemistry, and templating all enable ligations at otherwise suboptimal junctions. The continuing development of these tools is making the chemical synthesis of large proteins increasingly accessible.


Subject(s)
Chemistry Techniques, Synthetic/methods , Proteins/chemistry , Proteins/chemical synthesis , Selenium/chemistry
10.
Proc Natl Acad Sci U S A ; 117(36): 22436-22442, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32820072

ABSTRACT

Cholesterol-PIE12-trimer (CPT31) is a potent d-peptide HIV entry inhibitor that targets the highly conserved gp41 N-peptide pocket region. CPT31 exhibited strong inhibitory breadth against diverse panels of primary virus isolates. In a simian-HIV chimeric virus AD8 (SHIVAD8) macaque model, CPT31 prevented infection from a single high-dose rectal challenge. In chronically infected animals, CPT31 monotherapy rapidly reduced viral load by ∼2 logs before rebound occurred due to the emergence of drug resistance. In chronically infected animals with viremia initially controlled by combination antiretroviral therapy (cART), CPT31 monotherapy prevented viral rebound after discontinuation of cART. These data establish CPT31 as a promising candidate for HIV prevention and treatment.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV , Simian Immunodeficiency Virus , Virus Internalization/drug effects , Animals , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Drug Evaluation, Preclinical , Female , HIV/drug effects , HIV/genetics , HIV Envelope Protein gp41/antagonists & inhibitors , HIV Infections/drug therapy , HIV Infections/prevention & control , HIV Infections/virology , Macaca mulatta , Male , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/genetics
11.
Elife ; 92020 07 22.
Article in English | MEDLINE | ID: mdl-32697193

ABSTRACT

Fusion of HIV-1 with the membrane of its target cell, an obligate first step in virus infectivity, is mediated by binding of the viral envelope (Env) spike protein to its receptors, CD4 and CCR5/CXCR4, on the cell surface. The process of viral fusion appears to be fast compared with viral egress and has not been visualized by EM. To capture fusion events, the process must be curtailed by trapping Env-receptor binding at an intermediate stage. We have used fusion inhibitors to trap HIV-1 virions attached to target cells by Envs in an extended pre-hairpin intermediate state. Electron tomography revealed HIV-1 virions bound to TZM-bl cells by 2-4 narrow spokes, with slightly more spokes present when evaluated with mutant virions that lacked the Env cytoplasmic tail. These results represent the first direct visualization of the hypothesized pre-hairpin intermediate of HIV-1 Env and improve our understanding of Env-mediated HIV-1 fusion and infection of host cells.


Subject(s)
Electron Microscope Tomography , HIV-1/ultrastructure , Virus Internalization , HIV Envelope Protein gp41/antagonists & inhibitors , HIV-1/drug effects , HIV-1/physiology , HeLa Cells , Humans , Models, Molecular , Virion/ultrastructure , Virus Internalization/drug effects , env Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors , env Gene Products, Human Immunodeficiency Virus/metabolism , env Gene Products, Human Immunodeficiency Virus/ultrastructure
12.
Org Biomol Chem ; 17(48): 10237-10244, 2019 12 28.
Article in English | MEDLINE | ID: mdl-31793605

ABSTRACT

The application of solid-phase peptide synthesis and native chemical ligation in chemical protein synthesis (CPS) has enabled access to synthetic proteins that cannot be produced recombinantly, such as site-specific post-translationally modified or mirror-image proteins (D-proteins). However, CPS is commonly hampered by aggregation and insolubility of peptide segments and assembly intermediates. Installation of a solubilizing tag consisting of basic Lys or Arg amino acids can overcome these issues. Through the introduction of a traceless cleavable linker, the solubilizing tag can be selectively removed to generate native peptide. Here we describe the synthesis of a next-generation amine-reactive linker N-Fmoc-2-(7-amino-1-hydroxyheptylidene)-5,5-dimethylcyclohexane-1,3-dione (Fmoc-Ddap-OH) that can be used to selectively introduce semi-permanent solubilizing tags ("helping hands") onto Lys side chains of difficult peptides. This linker has improved stability compared to its predecessor, a property that can increase yields for multi-step syntheses with longer handling times. We also introduce a new linker cleavage protocol using hydroxylamine that greatly accelerates removal of the linker. The utility of this linker in CPS was demonstrated by the preparation of the synthetically challenging Shiga toxin subunit B (StxB) protein. This robust and easy-to-use linker is a valuable addition to the CPS toolbox for the production of challenging synthetic proteins.


Subject(s)
Peptides/chemistry , Protein Subunits/chemical synthesis , Shiga Toxin/chemical synthesis , Solid-Phase Synthesis Techniques/methods , Amino Acid Sequence , Arginine/chemistry , Cyclohexanones/chemistry , Hydroxylamine/chemistry , Lysine/chemistry , Solubility
13.
Retrovirology ; 16(1): 28, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31640718

ABSTRACT

BACKGROUND: PIE12-trimer is a highly potent D-peptide HIV-1 entry inhibitor that broadly targets group M isolates. It specifically binds the three identical conserved hydrophobic pockets at the base of the gp41 N-trimer with sub-femtomolar affinity. This extremely high affinity for the transiently exposed gp41 trimer provides a reserve of binding energy (resistance capacitor) to prevent the viral resistance pathway of stepwise accumulation of modest affinity-disrupting mutations. Such modest mutations would not affect PIE12-trimer potency and therefore not confer a selective advantage. Viral passaging in the presence of escalating PIE12-trimer concentrations ultimately selected for PIE12-trimer resistant populations, but required an extremely extended timeframe (> 1 year) in comparison to other entry inhibitors. Eventually, HIV developed resistance to PIE12-trimer by mutating Q577 in the gp41 pocket. RESULTS: Using deep sequence analysis, we identified three mutations at Q577 (R, N and K) in our two PIE12-trimer resistant pools. Each point mutant is capable of conferring the majority of PIE12-trimer resistance seen in the polyclonal pools. Surface plasmon resonance studies demonstrated substantial affinity loss between PIE12-trimer and the Q577R-mutated gp41 pocket. A high-resolution X-ray crystal structure of PIE12 bound to the Q577R pocket revealed the loss of two hydrogen bonds, the repositioning of neighboring residues, and a small decrease in buried surface area. The Q577 mutations in an NL4-3 backbone decreased viral growth rates. Fitness was ultimately rescued in resistant viral pools by a suite of compensatory mutations in gp120 and gp41, of which we identified seven candidates from our sequencing data. CONCLUSIONS: These data show that PIE12-trimer exhibits a high barrier to resistance, as extended passaging was required to develop resistant virus with normal growth rates. The primary resistance mutation, Q577R/N/K, found in the conserved gp41 pocket, substantially decreases inhibitor affinity but also damages viral fitness, and candidate compensatory mutations in gp160 have been identified.


Subject(s)
Anti-HIV Agents/pharmacology , Drug Resistance, Viral/genetics , HIV-1/drug effects , Peptides/pharmacology , Virus Internalization/drug effects , Cell Line , HIV Infections/virology , HIV-1/genetics , Humans , Mutation
14.
Elife ; 82019 06 11.
Article in English | MEDLINE | ID: mdl-31184588

ABSTRACT

Many AAA+ ATPases form hexamers that unfold protein substrates by translocating them through their central pore. Multiple structures have shown how a helical assembly of subunits binds a single strand of substrate, and indicate that translocation results from the ATP-driven movement of subunits from one end of the helical assembly to the other end. To understand how more complex substrates are bound and translocated, we demonstrated that linear and cyclic versions of peptides bind to the S. cerevisiae AAA+ ATPase Vps4 with similar affinities, and determined cryo-EM structures of cyclic peptide complexes. The peptides bind in a hairpin conformation, with one primary strand equivalent to the single chain peptide ligands, while the second strand returns through the translocation pore without making intimate contacts with Vps4. These observations indicate a general mechanism by which AAA+ ATPases may translocate a variety of substrates that include extended chains, hairpins, and crosslinked polypeptide chains.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Adenosine Triphosphatases/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Peptides, Cyclic/metabolism , Peptides/metabolism , Saccharomyces cerevisiae Proteins/metabolism , ATPases Associated with Diverse Cellular Activities/chemistry , ATPases Associated with Diverse Cellular Activities/genetics , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Amino Acid Sequence , Binding, Competitive , Cryoelectron Microscopy , Endosomal Sorting Complexes Required for Transport/chemistry , Endosomal Sorting Complexes Required for Transport/genetics , Endosomes , Models, Molecular , Peptides/chemistry , Peptides, Cyclic/chemistry , Protein Binding , Protein Conformation , Protein Multimerization , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
15.
Org Biomol Chem ; 17(7): 1703-1708, 2019 02 13.
Article in English | MEDLINE | ID: mdl-29947407

ABSTRACT

The introduction of solid-phase peptide synthesis in the 1960s improved the chemical synthesis of both the A- and B-chains of insulin and insulin analogs. However, the subsequent elaboration of the synthetic peptides to generate active hormones continues to be difficult and complex due in part to the hydrophobicity of the A-chain. Over the past decade, several groups have developed different methods to enhance A-chain solubility. Two of the most popular methods are use of isoacyl dipeptides, and the attachment of an A-chain C-terminal pentalysine tag with a base-labile 4-hydroxymethylbenzoic acid linker. These methods have proven effective but can be limited in scope depending on the peptide sequence of a specific insulin. Herein we describe an auxiliary approach to enhance the solubility of insulin-based peptides by incorporating a tri-lysine tag attached to a cleavable Fmoc-Ddae-OH linker. Incorporation of this linker, or "helping hand", on the N-terminus greatly improved the solubility of chicken insulin A-chain, which is analogous to human insulin, and allowed for coupling of the insulin A- and B-chain via directed disulfide bond formation. After formation of the insulin heterodimer, the linker and tag could be easily removed using a hydrazine buffer (pH 7.5) to obtain an overall 12.6% yield based on A-chain. This strategy offers an efficient method to enhance the solubility of hydrophobic insulin-based peptides as well as other traditionally difficult peptides.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Insulin/chemistry , Insulin/chemical synthesis , Animals , Benzoic Acid/chemistry , Disulfides/chemistry , Fluorenes/chemistry , Humans , Insulin/pharmacology , Mice , NIH 3T3 Cells , Solid-Phase Synthesis Techniques
16.
Mol Pharm ; 15(3): 1169-1179, 2018 03 05.
Article in English | MEDLINE | ID: mdl-29436835

ABSTRACT

Peptides often suffer from short in vivo half-lives due to proteolysis and renal clearance that limit their therapeutic potential in many indications, necessitating pharmacokinetic (PK) enhancement. d-Peptides, composed of mirror-image d-amino acids, overcome proteolytic degradation but are still vulnerable to renal filtration due to their small size. If renal filtration could be slowed, d-peptides would be promising therapeutic agents for infrequent dosing, such as in extended-release depots. Here, we tether a diverse set of PK-enhancing cargoes to our potent, protease-resistant d-peptide HIV entry inhibitor, PIE12-trimer. This inhibitor panel provides an opportunity to evaluate the PK impact of the cargoes independently of proteolysis. While all the PK-enhancing strategies (PEGylation, acylation, alkylation, and cholesterol conjugation) improved in vivo half-life, cholesterol conjugation of PIE12-trimer dramatically improves both antiviral potency and half-life in rats, making it our lead anti-HIV drug candidate. We designed its chemical synthesis for large-scale production (CPT31) and demonstrated that the PK profile in cynomolgous monkeys supports future development of monthly or less frequent depot dosing in humans. CPT31 could address an urgent need in both HIV prevention and treatment.


Subject(s)
HIV Fusion Inhibitors/pharmacokinetics , HIV Infections/drug therapy , HIV-1/drug effects , Peptide Fragments/pharmacokinetics , Animals , Cholesterol/chemistry , Delayed-Action Preparations , Drug Carriers/chemistry , Drug Design , Drug Evaluation, Preclinical , HIV Fusion Inhibitors/administration & dosage , HIV Fusion Inhibitors/chemical synthesis , HIV Infections/prevention & control , HIV Infections/virology , HIV-1/physiology , Half-Life , Macaca fascicularis , Male , Models, Animal , Peptide Fragments/administration & dosage , Peptide Fragments/chemical synthesis , Rats , Rats, Sprague-Dawley , Stereoisomerism
17.
Bioorg Med Chem ; 25(18): 4946-4952, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28651912

ABSTRACT

The scope of chemical protein synthesis (CPS) continues to expand, driven primarily by advances in chemical ligation tools (e.g., reversible solubilizing groups and novel ligation chemistries). However, the design of an optimal synthesis route can be an arduous and fickle task due to the large number of theoretically possible, and in many cases problematic, synthetic strategies. In this perspective, we highlight recent CPS tool advances and then introduce a new and easy-to-use program, Aligator (Automated Ligator), for analyzing and designing the most efficient strategies for constructing large targets using CPS. As a model set, we selected the E. coli ribosomal proteins and associated factors for computational analysis. Aligator systematically scores and ranks all feasible synthetic strategies for a particular CPS target. The Aligator script methodically evaluates potential peptide segments for a target using a scoring function that includes solubility, ligation site quality, segment lengths, and number of ligations to provide a ranked list of potential synthetic strategies. We demonstrate the utility of Aligator by analyzing three recent CPS projects from our lab: TNFα (157 aa), GroES (97 aa), and DapA (312 aa). As the limits of CPS are extended, we expect that computational tools will play an increasingly important role in the efficient execution of ambitious CPS projects such as production of a mirror-image ribosome.


Subject(s)
Computational Biology/methods , Proteins/chemical synthesis , Software , Chaperonin 10/chemical synthesis , Chaperonin 10/chemistry , Chaperonin 60/chemical synthesis , Chaperonin 60/chemistry , Escherichia coli/metabolism , Proteins/chemistry , Ribosomal Proteins/chemical synthesis , Ribosomal Proteins/chemistry , Tumor Necrosis Factor-alpha/chemical synthesis , Tumor Necrosis Factor-alpha/chemistry
18.
J Am Chem Soc ; 138(36): 11775-82, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27532670

ABSTRACT

Although native chemical ligation (NCL) and related chemoselective ligation approaches provide an elegant method to stitch together unprotected peptides, the handling and purification of insoluble and aggregation-prone peptides and assembly intermediates create a bottleneck to routinely preparing large proteins by completely synthetic means. In this work, we introduce a new general tool, Fmoc-Ddae-OH, N-Fmoc-1-(4,4-dimethyl-2,6-dioxocyclo-hexylidene)-3-[2-(2-aminoethoxy)ethoxy]-propan-1-ol, a heterobifunctional traceless linker for temporarily attaching highly solubilizing peptide sequences ("helping hands") onto insoluble peptides. This tool is implemented in three simple and nearly quantitative steps: (i) on-resin incorporation of the linker at a Lys residue ε-amine, (ii) Fmoc-SPPS elongation of a desired solubilizing sequence, and (iii) in-solution removal of the solubilizing sequence using mild aqueous hydrazine to cleave the Ddae linker after NCL-based assembly. Successful introduction and removal of a Lys6 helping hand is first demonstrated in two model systems (Ebola virus C20 peptide and the 70-residue ribosomal protein L31). It is then applied to the challenging chemical synthesis of the 97-residue co-chaperonin GroES, which contains a highly insoluble C-terminal segment that is rescued by a helping hand. Importantly, the Ddae linker can be cleaved in one pot following NCL or desulfurization. The purity, structure, and chaperone activity of synthetic l-GroES were validated with respect to a recombinant control. Additionally, the helping hand enabled synthesis of d-GroES, which was inactive in a heterochiral mixture with recombinant GroEL, providing additional insight into chaperone specificity. Ultimately, this simple, robust, and easy-to-use tool is expected to be broadly applicable for the synthesis of challenging peptides and proteins.


Subject(s)
Proteins/chemistry , Proteins/chemical synthesis , Amino Acid Sequence , Chemistry Techniques, Synthetic , Fluorenes/chemistry , Protein Folding , Ribosomal Proteins/chemical synthesis , Ribosomal Proteins/chemistry , Solubility , Viral Proteins/chemistry
19.
Org Biomol Chem ; 14(23): 5298-303, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27211891

ABSTRACT

Tumor Necrosis Factor alpha (TNFα) is an inflammatory cytokine that plays a central role in the pathogenesis of chronic inflammatory disease. Here we describe the chemical synthesis of l-TNFα along with the mirror-image d-protein for use as a phage display target. The synthetic strategy utilized native chemical ligation and desulfurization to unite three peptide segments, followed by oxidative folding to assemble the 52 kDa homotrimeric protein. This synthesis represents the foundational step for discovering an inhibitory d-peptide with the potential to improve current anti-TNFα therapeutic strategies.


Subject(s)
Peptide Library , Tumor Necrosis Factor-alpha/chemistry , Tumor Necrosis Factor-alpha/chemical synthesis , Models, Molecular , Protein Structure, Secondary , Stereoisomerism
20.
Protein Sci ; 24(4): 446-63, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25287718

ABSTRACT

Ebolaviruses are highly lethal filoviruses that cause hemorrhagic fever in humans and nonhuman primates. With no approved treatments or preventatives, the development of an anti-ebolavirus therapy to protect against natural infections and potential weaponization is an urgent global health need. Here, we describe the design, biophysical characterization, and validation of peptide mimics of the ebolavirus N-trimer, a highly conserved region of the GP2 fusion protein, to be used as targets to develop broad-spectrum inhibitors of ebolavirus entry. The N-trimer region of GP2 is 90% identical across all ebolavirus species and forms a critical part of the prehairpin intermediate that is exposed during viral entry. Specifically, we fused designed coiled coils to the N-trimer to present it as a soluble trimeric coiled coil as it appears during membrane fusion. Circular dichroism, sedimentation equilibrium, and X-ray crystallography analyses reveal the helical, trimeric structure of the designed N-trimer mimic targets. Surface plasmon resonance studies validate that the N-trimer mimic binds its native ligand, the C-peptide region of GP2. The longest N-trimer mimic also inhibits virus entry, thereby confirming binding of the C-peptide region during viral entry and the presence of a vulnerable prehairpin intermediate. Using phage display as a model system, we validate the suitability of the N-trimer mimics as drug screening targets. Finally, we describe the foundational work to use the N-trimer mimics as targets in mirror-image phage display, which will be used to identify D-peptide inhibitors of ebolavirus entry.


Subject(s)
Ebolavirus/chemistry , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Amino Acid Sequence , Drug Delivery Systems , Models, Molecular , Molecular Sequence Data , Protein Conformation , Sequence Alignment , Viral Envelope Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...