Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Fluoresc ; 32(5): 1801-1813, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35704139

ABSTRACT

In this current study, the novel bis[4,5-(pyrene-2-yl)-3,6-(hexyloxy)] phthalonitrile (SPN) fluorophore has been successfully synthesized. Structural characterization of this novel compound was performed by different spectroscopic methods such as FT-IR, MALDI-TOF, 1H-NMR, 13C-NMR and elemental analyses as well. In addition, the photophysical properties were determined using UV-vis absorption, steady-state fluorescence, time-resolved fluorescence spectroscopic methods and quantum chemical calculations. The metal sensing behavior of the SPN was determined in the presence of various metals (Li+, Na+, K+, Mg2+, Ca2+, Ba2+, Mn2+, Fe3+, Cr3+, Co2+, Ni2+, Ag+, Cd2+, Al3+, Hg+ and Zn2+) using fluorescence spectroscopy. The novel pyrene based phthalonitrile (SPN) showed high sensitivity and selectivity towards Fe3+ ion over other examined metal ions. In order to perform the determination of Fe3+ ion in environmental samples, experimental conditions such as selectivity, stability, precision, sensitivity, accuracy and recovery were optimized. Also, the complex stoichiometry of the novel pyrene based phthalonitrile (SPN) and Fe3+ ions was determined by a Job's plot. The compound was also studied via density functional theory calculations revealing the interaction mechanism of the molecule with Fe3+ ions.

2.
Turk J Chem ; 44(1): 64-73, 2020.
Article in English | MEDLINE | ID: mdl-33488143

ABSTRACT

The newly synthesized cyclotriphosphazene cored coumarin chemosensors 5, 6, and 7 were successfully characterized by 1 H NMR, 31 P NMR, and MALDI-TOF mass spectrometry. Additionally, the photophysical and metal sensing properties of the targeted compounds were determined by fluorescence spectroscopy in the presence of various metals (Li + , Na + , K + , Cs + , Mg 2+ , Ca 2+ , Ba 2+ , Cr 3+ , Mn 2+ , Fe 3+ , Co 2+ , Al 3+ , Hg + , Cu 2+ , Zn 2+ , Ag + , and Cd 2+ ) . The fluorescence titration results showed that compounds 5, 6, and 7 could be employed as fluorescent chemosensors for Fe 3+ ions with high sensitivity. The complex stoichiometry between final cyclotriphosphazene chemosensors and Fe 3+ ions was also determined by Job's plots.

3.
Bioorg Med Chem ; 25(20): 5415-5422, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28807573

ABSTRACT

Axially di-(alpha,alpha-diphenyl-4-pyridylmethoxy) silicon(IV) phthalocyanine (3) and its quaternized derivative (3Q) were synthesized and tested as photosensitizers against tumor and bacterial cells. These new phthalocyanines were characterized by elemental analysis, and different spectroscopic methods such as FT-IR, UV-Vis, MALDI-TOF and 1H NMR. The photophysical properties such as absorption and fluorescence, and the photochemical properties such as singlet oxygen generation of both phthalocyanines were investigated in solutions. The obtained values were compared to the values obtained with unsubstituted silicon(IV) phthalocyanine dichloride (SiPcCl2). The addition of two di-(alpha,alpha-diphenyl-4-pyridylmethanol) groups as axial ligands showed an improvement of the photophysical and photochemical properties and an increasement of the singlet oxygen quantum yield (ΦΔ) from 0.15 to 0.33 was determined. The photodynamic efficacy of synthesized photosensitizers (3 and 3Q) were evaluated with promising photocytotoxicity (17% cell survival for 3 and 28% for 3Q) against the cervical cancer cell line (HeLa). The photodynamic inactivation of pathogenic bacterial strains Streptococcus mutans, Staphylococcus aureus, and Pseudomonas aeruginosa suggested a high susceptibility with quaternized derivative (3Q). The both Gram-positive bacterial strains were fully photoinactivated with 11µM 3Q and mild light dose 50J.cm-2. In case of P. aeruginosa the effect was negligible for concentrations up to 22µM 3Q and light dose 100J.cm-2. The results suggested that the novel axially substituted silicon(IV) phthalocyanines have promising characteristic as photosensitizer towards tumor cells. The quaternized derivative 3Q has high potential for photoinactivation of pathogenic bacterial species.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Indoles/pharmacology , Organosilicon Compounds/pharmacology , Photosensitizing Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Indoles/chemistry , Isoindoles , Microbial Sensitivity Tests , Molecular Structure , Organosilicon Compounds/chemistry , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Streptococcus mutans/drug effects , Structure-Activity Relationship
4.
Dalton Trans ; 43(12): 4689-99, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24468739

ABSTRACT

A novel pyrene containing asymmetric Zn(II) phthalocyanine (AB3 type) was synthesized and characterized by various spectroscopic techniques as well as elemental analysis. A symmetric polyoxyethylene substituted Zn(II) phthalocyanine (B4 type) derivative was also prepared in order to compare the properties and determine the effect of the pyrene group on the phthalocyanine molecule. Composites of synthesized zinc(II) phthalocyanine-single wall carbon nanotubes (ZnPc-SWCNTs) containing 1 and 2 wt% carbon nanotubes were prepared by mixing these two components in dichloromethane followed by removal of the solvent and drying under vacuum. The liquid crystalline properties of the pure compounds and their composites were investigated in comparison with symmetric polyoxyethylene substituted Zn(II) phthalocyanine (B4 type) by using polarized optical microscopy, differential scanning calorimetry and X-ray diffraction analysis. The distribution of the SWCNTs in the ordered matrix of the columnar mesophase of these derivatives was studied by the method of polarized Raman spectroscopy and scanning electron microscopy (SEM). It was shown that the nature of the mesophases was not altered in these composites. The I(V) dependencies for the films deposited onto interdigitated electrodes were measured and it was shown that the lateral conductivity tends to increase with increasing SWCNT concentration.

SELECTION OF CITATIONS
SEARCH DETAIL
...