Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 24(8): 3498-3509, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37167224

ABSTRACT

This article reports a new family of functional side-chain phenolic polymers derived from lignin monomers, displaying a combination of properties that are usually mutually exclusive within a single material. This includes a well-defined molecular structure, transparency, antioxidant activity, and antistatic properties. Our design strategy is based on the lignin-derived bioaromatic monomer dihydroconiferyl alcohol (DCA), a promising and yet largely unexplored asymmetrical diol bearing one aliphatic and one phenolic hydroxyl group. A lipase-catalyzed (meth)acrylation protocol was developed to selectively functionalize the aliphatic hydroxy group of DCA while preserving its phenolic group responsible for its radical scavenging properties. The resulting mono-(meth)acrylated monomers were then directly copolymerized using reversible addition-fragmentation chain-transfer (RAFT) polymerization without any protection of the phenolic side chains. Kinetics studies revealed that, under select conditions, these unprotected phenolic groups surprisingly did not inhibit the radical polymerization and lead to polymers with defined molar masses, low dispersities, and block copolymers. Finally, applications of these new radical scavenging polymers were demonstrated using an antioxidant assay and antistatic experiments. This research opens the door to the direct incorporation of natural antioxidants within the synthetic polymer backbones, increasing the biobased content and limiting the leaching of potentially harmful additives.


Subject(s)
Antioxidants , Methamphetamine , Lignin , Kinetics , Polymers
2.
ACS Appl Mater Interfaces ; 14(50): 56018-56026, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36472348

ABSTRACT

Common polymers can accumulate surface charges through contact, a phenomenon known since ancient times. This charge accumulation can have detrimental consequences in industry. It causes accidents and yields enormous economic losses. Many empirical methods have been developed to prevent the problems caused by charge accumulation. However, a general chemical approach is still missing in the literature since the charge accumulation and discharging mechanisms have not been completely clarified. The current practice to achieve charge mitigation is to increase materials conductivity by high doping of conductive additives. A recent study showed that using photoexcitation of some organic dyes, charge decay can be started remotely, and the minute amount of additive does not change the material's conductivity. Here, we show the contact charging and charge decay behavior of polydimethylsiloxane doped with a series of organic charge transfer cocrystals (CTC) of TCNQ acceptor and substituted pyrene donors (CTC-PDMS). The results show that the CTC-PDMS are antistatic, and the discharging propensity of the composites follows the calculated charge transfer degree of the complexes. On the other hand, the CTC-PDMS are still insulators, as shown by their high surface resistivities. Kelvin probe force microscopy images of the contact-charged and discharged samples show a quick potential decay in CTC domains upon illumination. Combined with the fast overall decay observed, the antistatic behavior in these insulators can be attributed to an electron transfer between the mechanoions in the polymer and the CTC frontier orbitals. We believe our results will help with the general understanding of the molecular mechanism of contact charging and discharging and help develop insulator antistatics.

SELECTION OF CITATIONS
SEARCH DETAIL
...