Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37373021

ABSTRACT

After Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) developed into a global pandemic, not only the infection itself but also several immune-mediated side effects led to additional consequences. Immune reactions such as epitope spreading and cross-reactivity may also play a role in the development of long-COVID, although the exact pathomechanisms have not yet been elucidated. Infection with SARS-CoV-2 can not only cause direct damage to the lungs but can also lead to secondary indirect organ damage (e.g., myocardial involvement), which is often associated with high mortality. To investigate whether an immune reaction against the viral peptides can lead to organ affection, a mouse strain known to be susceptible to the development of autoimmune diseases, such as experimental autoimmune myocarditis (EAM), was used. First, the mice were immunized with single or pooled peptide sequences of the virus's spike (SP), membrane (MP), nucleocapsid (NP), and envelope protein (EP), then the heart and other organs such as the liver, kidney, lung, intestine, and muscle were examined for signs of inflammation or other damage. Our results showed no significant inflammation or signs of pathology in any of these organs as a result of the immunization with these different viral protein sequences. In summary, immunization with different SARS-CoV-2 spike-, membrane-, nucleocapsid-, and envelope-protein peptides does not significantly affect the heart or other organ systems adversely, even when using a highly susceptible mouse strain for experimental autoimmune diseases. This suggests that inducing an immune reaction against these peptides of the SARS-CoV-2 virus alone is not sufficient to cause inflammation and/or dysfunction of the myocardium or other studied organs.


Subject(s)
Autoimmune Diseases , COVID-19 , Myocarditis , Mice , Humans , Animals , SARS-CoV-2 , Autoimmunity , Myocarditis/etiology , Epitopes , Post-Acute COVID-19 Syndrome , Peptides , Autoimmune Diseases/etiology , Inflammation
2.
Int J Mol Sci ; 24(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36902442

ABSTRACT

In the course of the SARS-CoV-2 pandemic, vaccination safety and risk factors of SARS-CoV-2 mRNA-vaccines were under consideration after case reports of vaccine-related side effects, such as myocarditis, which were mostly described in young men. However, there is almost no data on the risk and safety of vaccination, especially in patients who are already diagnosed with acute/chronic (autoimmune) myocarditis from other causes, such as viral infections, or as a side effect of medication and treatment. Thus, the risk and safety of these vaccines, in combination with other therapies that could induce myocarditis (e.g., immune checkpoint inhibitor (ICI) therapy), are still poorly assessable. Therefore, vaccine safety, with respect to worsening myocardial inflammation and myocardial function, was studied in an animal model of experimentally induced autoimmune myocarditis. Furthermore, it is known that ICI treatment (e.g., antibodies (abs) against PD-1, PD-L1, and CTLA-4, or a combination of those) plays an important role in the treatment of oncological patients. However, it is also known that treatment with ICIs can induce severe, life-threatening myocarditis in some patients. Genetically different A/J (most susceptible strain) and C57BL/6 (resistant strain) mice, with diverse susceptibilities for induction of experimental autoimmune myocarditis (EAM) at various age and gender, were vaccinated twice with SARS-CoV-2 mRNA-vaccine. In an additional A/J group, an autoimmune myocarditis was induced. In regard to ICIs, we tested the safety of SARS-CoV-2 vaccination in PD-1-/- mice alone, and in combination with CTLA-4 abs. Our results showed no adverse effects related to inflammation and heart function after mRNA-vaccination, independent of age, gender, and in different mouse strains susceptible for induction of experimental myocarditis. Moreover, there was no worsening effect on inflammation and cardiac function when EAM in susceptible mice was induced. However, in the experiments with vaccination and ICI treatment, we observed, in some mice, low elevation of cardiac troponins in sera, and low scores of myocardial inflammation. In sum, mRNA-vaccines are safe in a model of experimentally induced autoimmune myocarditis, but patients undergoing ICI therapy should be closely monitored when vaccinated.


Subject(s)
COVID-19 , Drug-Related Side Effects and Adverse Reactions , Myocarditis , Male , Animals , Humans , Mice , Mice, Inbred C57BL , COVID-19 Vaccines , CTLA-4 Antigen , SARS-CoV-2 , Programmed Cell Death 1 Receptor , Inflammation , Antibodies , Models, Animal , RNA, Messenger , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...