Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Dev Res ; 85(4): e22224, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867474

ABSTRACT

The mammalian cytoplasmic protein SIRT2, a class III histone deacetylase family member, possesses NAD+-dependent lysine deacetylase/deacylase activity. Dysregulation of SIRT2 has been implicated in the pathogenesis of several diseases, including neurological and metabolic disorders and cancer; thus, SIRT2 emerges as a potential therapeutic target. Herein, we identified a series of diaryl acetamides (ST61-ST90) by the structural optimization of our hit STH2, followed by enhanced SIRT2 inhibitory potency and selectivity. Among them, ST72, ST85, and ST88 selectively inhibited SIRT2 with IC50 values of 9.97, 5.74, and 8.92 µM, respectively. Finally, the entire study was accompanied by in silico prediction of binding modes of docked compounds and the stability of SIRT2-ligand complexes. We hope our findings will provide substantial information for designing selective inhibitors of SIRT2.


Subject(s)
Acetamides , Sirtuin 2 , Sirtuin 2/antagonists & inhibitors , Sirtuin 2/chemistry , Sirtuin 2/metabolism , Humans , Acetamides/chemistry , Acetamides/pharmacology , Molecular Docking Simulation , Structure-Activity Relationship , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry
2.
Bioorg Chem ; 143: 107038, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38113655

ABSTRACT

Sirtuin 2 (SIRT2) is involved in a wide range of processes, from transcription to metabolism to genome stability. Dysregulation of SIRT2 has been associated with the pathogenesis and progression of different diseases, such as cancer and neurodegenerative disorders. In this context, targeting SIRT2 activity by small molecule inhibitors is a promising therapeutic strategy for treating related conditions, particularly cancer. This review summarizes the regulatory roles and molecular mechanisms of SIRT2 in cancer and the attempts to evaluate potential antitumor activities of SIRT2-selective inhibitors by in vitro and in vivo testing, which are expected to deepen our understanding of the role of SIRT2 in tumorigenesis and progression and may offer important clues or inspiration ideas for developing SIRT2 inhibitors with excellent affinity and selectivity.


Subject(s)
Neoplasms , Sirtuin 2 , Humans , Neoplasms/drug therapy
3.
Bioorg Chem ; 123: 105746, 2022 06.
Article in English | MEDLINE | ID: mdl-35358824

ABSTRACT

Sirtuin 2 (SIRT2), member of sirtuin family, belongs to class III histone deacetylases (HDACs) and is majorly cytosolic with occasional nuclear translocation. The enzymatic activity of SIRT2 is dependent on nicotinamide adenine dinucleotide (NAD+) and SIRT2 regulates post-translational modifications that are responsible for deacetylation of lysine residues in histone and non-histone substrates. SIRT2, thus affects most likely multiple cellular processes, such as signaling, gene expression, aging, autophagy, and has been identified as potential drug target in relation to inflammation, neurodegenerative diseases and cancer. Therefore, probing potential selective inhibitors is essential for the accurate understanding of enzyme functions. Here, we report a series of heteroaryl-2-carboxamide hybrids bearing substituted benzyl or substituted phenoxy group at the 5-position of the central heterocyclic ring. The synthesized compounds were screened against SIRT1-3 and MCF-7 human breast cancer cell line to evaluate their biological activity. The best SIRT2 inhibition profiles were displayed by ST29 (SIRT2 IC50 = 38.69 µM) and ST30 (SIRT2 IC50 = 43.29 µM) with excellent selectivity against SIRT2 over SIRT1 and SIRT3. Molecular docking study of the synthesized compounds into SIRT2 active site was performed to rationalize the remarkable SIRT2 inhibitory activity. Furthermore, we performed all-atom, explicit-solvent molecular dynamics (MD) simulations and end-point binding free energy calculations using molecular mechanics/generalized Born surface area (MM/GBSA) method to evaluate whether this design strategy was successfully deployed. The results implied that the binding poses and ligand affinities were predicted without significant loss of accuracy. Conclusively, the developed chemotypes were advocated as promising leads for SIRT2 inhibition and required further investigation for SIRT2-targeted drug discovery and development.


Subject(s)
Histone Deacetylase Inhibitors , Sirtuin 2 , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Humans , Molecular Docking Simulation , Sirtuin 1/metabolism , Structure-Activity Relationship , Thiadiazoles
4.
Bioorg Med Chem ; 30: 115961, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33360574

ABSTRACT

Sirtuins (SIRTs) are a class of nicotinamide adenine dinucleotide (NAD+)-dependent protein histone deacetylases (HDACs) that are evolutionarily conserved from bacteria to mammals. This group of enzymes catalyses the reversible deacetylation of lysine residues in the histones or non-histone substrates using NAD+ as a cosubstrate. Numerous studies have demonstrated that the aberrant enzymatic activity of SIRTs has been linked to various diseases like diabetes, cancer, and neurodegenerative disorders. Previously, we performed a pharmacophore-based virtual screening campaign and an aryloxybenzamide derivative (1) displaying SIRT1/2 inhibitory effect was identified as a hit compound. In the current study, the hit-to-lead optimization on the hit compound was explored in order to improve the SIRT binding and inhibition. Fourteen compounds, ten of which were new, have been synthesized and subjected to in vitro biological evaluation for their inhibitory activity against SIRT1-3. By the structural modifications performed, a significant improvement was observed in selective SIRT1 inhibition for ST01, ST02, and ST11 compared to that of the hit compound. The highest SIRT2 inhibitory activity was observed for ST14, which was designed according to compatibility with pharmacophore model developed for SIRT2 inhibitors and thus, providing the interactions required with key residues in SIRT2 active site. Furthermore, ST01, ST02, ST11, and ST14 were subjected to in vitro cytotoxicity assay against MCF-7 human breast cancer cell line to determine the influence of the improvement in SIRT1/2 inhibition along with the structural modifications on the cytotoxic properties of the compounds. The cytotoxicity of the compounds was found to be correlated with their SIRT inhibitory profiles indicating the effects of SIRT1/2 inhibition on cancer cell viability. Overall, this study provides structural insights for further inhibitor improvement.


Subject(s)
Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Sirtuin 1/antagonists & inhibitors , Sirtuin 2/antagonists & inhibitors , Sirtuin 3/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzamides/chemical synthesis , Benzamides/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , MCF-7 Cells , Molecular Docking Simulation , Molecular Structure , Sirtuin 1/metabolism , Sirtuin 2/metabolism , Sirtuin 3/metabolism , Structure-Activity Relationship
5.
J Mol Graph Model ; 89: 60-73, 2019 06.
Article in English | MEDLINE | ID: mdl-30870650

ABSTRACT

Sirtuins (SIRTs) are a class of NAD+-dependent protein histone deacetylases (HDACs) that catalyse the reversible deacetylation of lysine residues in the histones or non-histone substrates. Mammalian sirtuins consist of seven isoforms (SIRT1-7), which show different subcellular localizations and enzymatic functions. Among the seven human sirtuins, SIRT2 predominantly located in the cytoplasm but is enriched in the nucleus during mitosis. Its activity has been found to be modulate the pathophysiology of various diseases such as cancer, metabolic and neurodegenerative disorders. Therefore, selective SIRT2 inhibitors are of growing interest as potentially candidate therapeutic agents to treat SIRT2-driven pathologies as well as valuable tools to investigate and define the biological roles of SIRT2. Herein, in order to identify potent leads against SIRT2, a multi-step pharmacophore based-virtual screening campaign was performed and 31 predicted compounds were subjected to in vitro biological evaluation. Finally, compound 2 and 3 showing better SIRT2 inhibition potency were selected for further in vitro cytotoxic assays against a panel of three human cancer cell lines. This study will hopefully provide a basis for developing potent and selective SIRT2 inhibitors.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Models, Molecular , Sirtuin 2/chemistry , Cell Line , Computer Simulation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Conformation , Molecular Structure , ROC Curve , Sirtuin 2/antagonists & inhibitors , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...