Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Tissue Eng Part A ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38323585

ABSTRACT

Tissue engineering strategies show great potential for repairing osteochondral defects in osteoarthritic joints; however, these approaches often rely on passaging cells multiple times to obtain enough cells to produce functional tissue. Unfortunately, monolayer expansion culture causes chondrocyte dedifferentiation, which is accompanied by a phenotypical and morphological shift in chondrocyte properties that leads to a reduction in the quality of de novo cartilage produced. Thus, the objective of this study was to evaluate transcriptional variations during in vitro expansion culture and determine how differences in cell phenotype from monolayer expansion alter development of functional engineered cartilage. We used an unbiased approach to explore genome-wide transcriptional differences in chondrocyte phenotype at passage 1 (P1), P3, and P5, and then seeded cells into hydrogel scaffolds at P3 and P5 to assess cells' abilities to produce cartilaginous extracellular matrix in three dimensional (3D). We identified distinct phenotypic differences, specifically for genes related to extracellular organization and cartilage development. Both P3 and P5 chondrocytes were able to produce chondrogenic tissue in 3D, with P3 cells producing matrix with greater compressive properties and P5 cells secreting matrix with higher glycosaminoglycan/DNA and collagen/DNA ratios. Furthermore, we identified 24 genes that were differentially expressed with passaging and enriched in human osteoarthritis (OA) genome-wide association studies, thereby prioritizing them as functionally relevant targets to improve protocols that recapitulate functional healthy cartilage with cells from adult donors. Specifically, we identified novel genes, such as TMEM190 and RAB11FIP4, which were enriched with human hip OA and may play a role in chondrocyte dedifferentiation. This work lays the foundation for several pathways and genes that could be modulated to enhance the efficacy for chondrocyte culture for tissue regeneration, which could have transformative impacts for cell-based cartilage repair strategies.

2.
Bone Res ; 12(1): 13, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38409111

ABSTRACT

Poor bone quality is a major factor in skeletal fragility in elderly individuals. The molecular mechanisms that establish and maintain bone quality, independent of bone mass, are unknown but are thought to be primarily determined by osteocytes. We hypothesize that the age-related decline in bone quality results from the suppression of osteocyte perilacunar/canalicular remodeling (PLR), which maintains bone material properties. We examined bones from young and aged mice with osteocyte-intrinsic repression of TGFß signaling (TßRIIocy-/-) that suppresses PLR. The control aged bone displayed decreased TGFß signaling and PLR, but aging did not worsen the existing PLR suppression in male TßRIIocy-/- bone. This relationship impacted the behavior of collagen material at the nanoscale and tissue scale in macromechanical tests. The effects of age on bone mass, density, and mineral material behavior were independent of osteocytic TGFß. We determined that the decline in bone quality with age arises from the loss of osteocyte function and the loss of TGFß-dependent maintenance of collagen integrity.


Subject(s)
Bone Remodeling , Osteocytes , Humans , Aged , Male , Animals , Mice , Bone Remodeling/physiology , Collagen/pharmacology , Aging , Transforming Growth Factor beta/pharmacology
3.
Curr Osteoporos Rep ; 21(6): 637-649, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37831357

ABSTRACT

PURPOSE OF REVIEW: The integration of data from multiple genomic assays from humans and non-human model organisms is an effective approach to identify genes involved in skeletal fragility and fracture risk due to osteoporosis and other conditions. This review summarizes genome-wide genetic variation and gene expression data resources relevant to the discovery of genes contributing to skeletal fragility and fracture risk. RECENT FINDINGS: Genome-wide association studies (GWAS) of osteoporosis-related traits are summarized, in addition to gene expression in bone tissues in humans and non-human organisms, with a focus on rodent models related to skeletal fragility and fracture risk. Gene discovery approaches using these genomic data resources are described. We also describe the Musculoskeletal Knowledge Portal (MSKKP) that integrates much of the available genomic data relevant to fracture risk. The available genomic resources provide a wealth of knowledge and can be analyzed to identify genes related to fracture risk. Genomic resources that would fill particular scientific gaps are discussed.


Subject(s)
Fractures, Bone , Osteoporosis , Humans , Bone Density/genetics , Genome-Wide Association Study , Genetic Predisposition to Disease , Osteoporosis/genetics , Fractures, Bone/genetics , Bone and Bones , Gene Expression , Biology
4.
Bone ; 175: 116836, 2023 10.
Article in English | MEDLINE | ID: mdl-37414200

ABSTRACT

Bone derives its ability to resist fracture from bone mass and quality concurrently; however, many questions about the molecular mechanisms controlling bone quality remain unanswered, limiting the development of diagnostics and therapeutics. Despite the increasing evidence on the importance of miR181a/b-1 in bone homeostasis and disease, whether and how osteocyte-intrinsic miR181a/b-1 controls bone quality remains elusive. Osteocyte-intrinsic deletion of miR181a/b-1 in osteocytes in vivo resulted in compromised overall bone mechanical behavior in both sexes, although the parameters affected by miR181a/b-1 varied distinctly based on sex. Furthermore, impaired fracture resistance in both sexes was unexplained by cortical bone morphology, which was altered in female mice and intact in male mice with miR181a/b-1-deficient osteocytes. The role of miR181a/b-1 in the regulation of osteocyte metabolism was apparent in bioenergetic testing of miR181a/b-1-deficient OCY454 osteocyte-like cells and transcriptomic analysis of cortical bone from mice with osteocyte-intrinsic ablation of miR181a/b-1. Altogether, this study demonstrates the control of osteocyte bioenergetics and the sexually dimorphic regulation of cortical bone morphology and mechanical properties by miR181a/b-1, hinting at the role of osteocyte metabolism in the regulation of mechanical behavior.


Subject(s)
Bone and Bones , Osteocytes , Mice , Male , Animals , Female , Osteocytes/metabolism , Bone and Bones/metabolism , Cortical Bone/metabolism , Bone Density , Energy Metabolism
5.
Bone Rep ; 18: 101647, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36636109

ABSTRACT

Subchondral bone participates in crosstalk with articular cartilage to maintain joint homeostasis, and disruption of either tissue results in overall joint degeneration. Among the subchondral bone changes observed in osteoarthritis (OA), subchondral bone plate (SBP) thickening has a time-dependent relationship with cartilage degeneration and has recently been shown to be regulated by osteocytes. Here, we evaluate the effect of age on SBP thickness and cartilage degeneration in aging mice. We find that SBP thickness significantly increases by 18-months of age, corresponding temporally with increased cartilage degeneration. To identify factors in subchondral bone that may participate in bone cartilage crosstalk or OA, we leveraged mouse transcriptomic data from one joint tissue compartment - osteocyte-enriched bone - to search for enrichment with human OA in UK Biobank and Arthritis Research UK Osteoarthritis Genetics (arcOGEN) GWAS using the mouse2human (M2H, www.mouse2human.org) strategy. Genes differentially expressed in aging mouse bone are significantly enriched for human OA, showing joint site-specific (knee vs. hip) relationships, exhibit temporal associations with age, and unique gene clusters are implicated in each type of OA. Application of M2H identifies genes with known and unknown functions in osteocytes and OA development that are clinically associated with human OA. Altogether, this work prioritizes genes with a potential role in bone/cartilage crosstalk for further mechanistic study based on their association with human OA in GWAS.

6.
J Bone Miner Res ; 37(4): 804-817, 2022 04.
Article in English | MEDLINE | ID: mdl-35094432

ABSTRACT

Identifying new genetic determinants of bone mineral density (BMD) and fracture promises to yield improved diagnostics and therapies for bone fragility. However, prioritizing candidate genes from genome-wide screens can be challenging. To overcome this challenge, we prioritized mouse genes that are differentially expressed in aging mouse bone based on whether their human homolog is associated with human BMD and/or fracture. Unbiased RNA-seq analysis of young and old male C57BL/6 mouse cortical bone identified 1499, 1685, and 5525 differentially expressed genes (DEGs) in 1, 2, and 2.5-year-old bone, relative to 2-month-old bone, respectively. Gene-based scores for heel ultrasound bone mineral density (eBMD) and fracture were estimated using published genome-wide association studies (GWAS) results of these traits in the UK Biobank. Enrichment analysis showed that mouse bone DEG sets for all three age groups, relative to young bone, are significantly enriched for eBMD, but only the oldest two DEG sets are enriched for fracture. Using gene-based scores, this approach prioritizes among thousands of DEGs by a factor of 5- to 100-fold, yielding 10 and 21 genes significantly associated with fracture in the two oldest groups of mouse DEGs. Though these genes were not the most differentially expressed, they included Sost, Lrp5, and others with well-established functions in bone. Several others have, as yet, unknown roles in the skeleton. Therefore, this study accelerates identification of new genetic determinants of bone fragility by prioritizing a clinically relevant and experimentally tractable number of candidate genes for functional analysis. Finally, we provide a website (www.mouse2human.org) to enable other researchers to easily apply our strategy. © 2022 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Fractures, Bone , Genome-Wide Association Study , Aging/genetics , Animals , Bone Density/genetics , Fractures, Bone/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Polymorphism, Single Nucleotide , Transcriptome/genetics
7.
FASEB J ; 35(10): e21883, 2021 10.
Article in English | MEDLINE | ID: mdl-34569659

ABSTRACT

Organism scale mechanical forces elicit cellular scale changes through coordinated regulation of multiple signaling pathways. The mechanisms by which cells integrate signaling to generate a unified biological response remains a major question in mechanobiology. For example, the mechanosensitive response of bone and other tissues requires coordinated signaling by the transforming growth factor beta (TGFß) and Wnt pathways through mechanisms that are not well-defined. Here we report a new microRNA-dependent mechanism that mediates mechanosensitive crosstalk between TGFß and Wnt signaling in osteocytes exposed to fluid shear stress (FSS). From 60 mechanosensitive microRNA (miRs) identified by small-RNAseq, miR100 expression is suppressed by in vivo hindlimb loading in the murine tibia and by cellular scale FSS in OCY454 cells. Though FSS activates both TGFß and Wnt signaling in osteocytes, only TGFß represses miR-100 expression. miR-100, in turn, antagonizes Wnt signaling by targeting and inhibiting expression of Frizzled receptors (FZD5/FZD8). Accordingly, miR-100 inhibition blunts FSS- and TGFß-inducible Wnt signaling. Therefore, our results identify FSS-responsive miRNAs in osteocytes, including one that integrates the mechanosensitive function of two essential signaling pathways in the osteoanabolic response of bone to mechanical load.


Subject(s)
Mechanotransduction, Cellular , MicroRNAs/metabolism , Osteocytes/metabolism , Shear Strength , Transforming Growth Factor beta/metabolism , Wnt Signaling Pathway , Animals , Cell Line , Male , Mice , MicroRNAs/genetics , Transforming Growth Factor beta/genetics
8.
FASEB J ; 35(3): e21263, 2021 03.
Article in English | MEDLINE | ID: mdl-33570811

ABSTRACT

Bone is a dynamic tissue that constantly adapts to changing mechanical demands. The transforming growth factor beta (TGFß) signaling pathway plays several important roles in maintaining skeletal homeostasis by both coupling the bone-forming and bone-resorbing activities of osteoblasts and osteoclasts and by playing a causal role in the anabolic response of bone to applied loads. However, the extent to which the TGFß signaling pathway in osteocytes is directly regulated by fluid shear stress (FSS) is unknown, despite work suggesting that fluid flow along canaliculi is a dominant physical cue sensed by osteocytes following bone compression. To investigate the effects of FSS on TGFß signaling in osteocytes, we stimulated osteocytic OCY454 cells cultured within a microfluidic platform with FSS. We find that FSS rapidly upregulates Smad2/3 phosphorylation and TGFß target gene expression, even in the absence of added TGFß. Indeed, relative to treatment with TGFß, FSS induced a larger increase in levels of pSmad2/3 and Serpine1 that persisted even in the presence of a TGFß receptor type I inhibitor. Our results show that FSS stimulation rapidly induces phosphorylation of multiple TGFß family R-Smads by stimulating multimerization and concurrently activating several TGFß and BMP type I receptors, in a manner that requires the activity of the corresponding ligand. While the individual roles of the TGFß and BMP signaling pathways in bone mechanotransduction remain unclear, these results implicate that FSS activates both pathways to generate a downstream response that differs from that achieved by either ligand alone.


Subject(s)
Osteocytes/physiology , Receptor, Transforming Growth Factor-beta Type I/physiology , Activin Receptors, Type II/physiology , Animals , Cells, Cultured , Lab-On-A-Chip Devices , Mice , Protein Multimerization , Receptor, Transforming Growth Factor-beta Type I/chemistry , Sequence Analysis, RNA , Signal Transduction/physiology , Smad2 Protein/physiology , Smad3 Protein/physiology , Stress, Mechanical
9.
Bone Res ; 7: 34, 2019.
Article in English | MEDLINE | ID: mdl-31700695

ABSTRACT

Osteoarthritis (OA), long considered a primary disorder of articular cartilage, is commonly associated with subchondral bone sclerosis. However, the cellular mechanisms responsible for changes to subchondral bone in OA, and the extent to which these changes are drivers of or a secondary reaction to cartilage degeneration, remain unclear. In knee joints from human patients with end-stage OA, we found evidence of profound defects in osteocyte function. Suppression of osteocyte perilacunar/canalicular remodeling (PLR) was most severe in the medial compartment of OA subchondral bone, with lower protease expression, diminished canalicular networks, and disorganized and hypermineralized extracellular matrix. As a step toward evaluating the causality of PLR suppression in OA, we ablated the PLR enzyme MMP13 in osteocytes while leaving chondrocytic MMP13 intact, using Cre recombinase driven by the 9.6-kb DMP1 promoter. Not only did osteocytic MMP13 deficiency suppress PLR in cortical and subchondral bone, but it also compromised cartilage. Even in the absence of injury, osteocytic MMP13 deficiency was sufficient to reduce cartilage proteoglycan content, change chondrocyte production of collagen II, aggrecan, and MMP13, and increase the incidence of cartilage lesions, consistent with early OA. Thus, in humans and mice, defects in PLR coincide with cartilage defects. Osteocyte-derived MMP13 emerges as a critical regulator of cartilage homeostasis, likely via its effects on PLR. Together, these findings implicate osteocytes in bone-cartilage crosstalk in the joint and suggest a causal role for suppressed perilacunar/canalicular remodeling in osteoarthritis.

10.
J Bone Miner Res ; 32(4): 688-697, 2017 04.
Article in English | MEDLINE | ID: mdl-27859586

ABSTRACT

Osteocytes can remove and remodel small amounts of their surrounding bone matrix through osteocytic osteolysis, which results in increased volume occupied by lacunar and canalicular space (LCS). It is well established that cortical bone stiffness and strength are strongly and inversely correlated with vascular porosity, but whether changes in LCS volume caused by osteocytic osteolysis are large enough to affect bone mechanical properties is not known. In the current studies we tested the hypotheses that (1) lactation and postlactation recovery in mice alter the elastic modulus of bone tissue, and (2) such local changes in mechanical properties are related predominantly to alterations in lacunar and canalicular volume rather than bone matrix composition. Mechanical testing was performed using microindentation to measure modulus in regions containing solely osteocytes and no vascular porosity. Lactation caused a significant (∼13%) reduction in bone tissue-level elastic modulus (p < 0.001). After 1 week postweaning (recovery), bone modulus levels returned to control levels and did not change further after 4 weeks of recovery. LCS porosity tracked inversely with changes in cortical bone modulus. Lacunar and canalicular void space increased 7% and 15% with lactation, respectively (p < 0.05), then returned to control levels at 1 week after weaning. Neither bone mineralization (assessed by high-resolution backscattered scanning electron microscopy) nor mineral/matrix ratio or crystallinity (assessed by Raman microspectroscopy) changed with lactation. Thus, changes in bone mechanical properties induced by lactation and recovery appear to depend predominantly on changes in osteocyte LCS dimensions. Moreover, this study demonstrates that tissue-level cortical bone mechanical properties are rapidly and reversibly modulated by osteocytes in response to physiological challenge. These data point to a hitherto unappreciated role for osteocytes in modulating and maintaining local bone mechanical properties. © 2016 American Society for Bone and Mineral Research.


Subject(s)
Bone Density/physiology , Bone and Bones/metabolism , Elastic Modulus , Lactation/physiology , Osteocytes/metabolism , Osteolysis/metabolism , Animals , Bone and Bones/cytology , Cell Size , Female , Mice , Osteocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...