Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Water Res ; 117: 18-26, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28364652

ABSTRACT

We introduce here a novel process for the treatment of particulate-rich wastewater. A two-stage combined treatment process, consisting of an electrolysis filter and a bioelectrochemical system (BES) configuration was designed and evaluated to remove particulate and soluble organic matter from municipal wastewater. The system was designed such that the electrolysis step was used as a filter, enabling physical removal and in situ alkaline hydrolysis of the entrapped particulate matter. The alkaline effluent enriched with the hydrolysed soluble compounds (soluble chemical oxygen demand, SCOD) was subsequently loaded into the BES for removal via bioanodic oxidation. The coupled system was continuously operated with a primary sedimentation tank effluent (suspended solids (SS) ∼200 mg/L) for over 160 days, during which SCOD and total COD (TCOD), SS removal and current production were evaluated. With no sign of clogging the process was able to capture near 100% of the SS loaded. A high Coulombic efficiency (CE) of 93% (based on overall TCOD removed) was achieved. The results also suggest that the SCOD-laden alkaline liquor from the electrolysis step compensated for the acidification in the bioanode and a final effluent containing low COD with neutral pH was achieved. Overall, since the system can effectively entrap, in situ hydrolyse and oxidise organic matter without external dosing of chemicals for pH control, it has desirable features for practical application.


Subject(s)
Waste Disposal, Fluid , Wastewater/chemistry , Biological Oxygen Demand Analysis , Electrolysis , Hydrolysis
2.
Water Sci Technol ; 74(4): 974-84, 2016.
Article in English | MEDLINE | ID: mdl-27533871

ABSTRACT

This study examines the use of bioelectrochemical systems (BES) as an alternative to rock filters for polishing wastewater stabilisation ponds (WSPs) effluent, which often contains soluble chemical oxygen demand (SCOD) and suspended solids mainly as algal biomass. A filter type sediment BES configuration with graphite granules (as the surrogate for rocks in a rock filter) was examined. Three reactor columns were set up to examine three different treatments: (i) open-circuit without current generation; (ii) close-circuit - with current generation; and (iii) control reactor without electrode material. All columns were continuously operated for 170 days with real municipal wastewater at a hydraulic retention time of 5 days. Compared to the control reactor, the two experimental reactors showed significant improvement of SCOD removal (from approximately 25% to 66%) possibly due to retention of biomass on the graphite media. However, substantial amount of SCOD (60%) was removed via non-current generation pathways, and a very low Coulombic efficiency (6%) was recorded due to a poor cathodic oxygen reduction kinetics and a large electrode spacing. Addressing these challenges are imperative to further develop BES technology for WSP effluent treatment.


Subject(s)
Bioreactors , Filtration/instrumentation , Wastewater/chemistry , Water Purification/instrumentation , Biological Oxygen Demand Analysis , Biomass , Cities , Filtration/methods , Waste Disposal, Fluid , Water Purification/methods
3.
Bioresour Technol ; 216: 529-36, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27268438

ABSTRACT

This study examined for the first time the use of bioelectrochemical systems (BES) to entrap, decompose and oxidise fresh algal biomass from an algae-laden effluent. The experimental process consisted of a photobioreactor for a continuous production of the algal-laden effluent, and a two-chamber BES equipped with anodic graphite granules and carbon-felt to physically remove and oxidise algal biomass from the influent. Results showed that the BES filter could retain ca. 90% of the suspended solids (SS) loaded. A coulombic efficiency (CE) of 36.6% (based on particulate chemical oxygen demand (PCOD) removed) was achieved, which was consistent with the highest CEs of BES studies (operated in microbial fuel cell mode (MFC)) that included additional pre-treatment steps for algae hydrolysis. Overall, this study suggests that a filter type BES anode can effectively entrap, decompose and in situ oxidise algae without the need for a separate pre-treatment step.


Subject(s)
Biomass , Waste Disposal, Fluid/instrumentation , Waste Disposal, Fluid/methods , Biological Oxygen Demand Analysis , Carbon , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Equipment Design , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/metabolism , Hydrolysis , Oxidation-Reduction , Photobioreactors , Wastewater/chemistry
4.
Water Sci Technol ; 68(5): 982-90, 2013.
Article in English | MEDLINE | ID: mdl-24037147

ABSTRACT

Removal of phosphorus (P) and nitrogen (N) from municipal wastewaters is required to mitigate eutrophication of receiving water bodies. While most treatment plants achieve good N removal using influent carbon (C), the use of influent C to facilitate enhanced biological phosphorus removal (EBPR) is poorly explored. A number of operational parameters can facilitate optimum use of influent C and this study investigated the effects of cycle length, dissolved oxygen (DO) concentration during aerobic period and influent solids on biological P and N removal in sequencing batch reactors (SRBs) using municipal wastewaters. Increasing cycle length from 3 to 6 h increased P removal efficiency, which was attributed to larger portion of N being removed via nitrite pathway and more biodegradable organic C becoming available for EBPR. Further increasing cycle length from 6 to 8 h decreased P removal efficiencies as the demand for biodegradable organic C for denitrification increased as a result of complete nitrification. Decreasing DO concentration in the aerobic period from 2 to 0.8 mg L(-1) increased P removal efficiency but decreased nitrification rates possibly due to oxygen limitation. Further, sedimented wastewater was proved to be a better influent stream than non-sedimented wastewater possibility due to the detrimental effect of particulate matter on biological nutrient removal.


Subject(s)
Bioreactors/microbiology , Nitrogen/metabolism , Phosphorus/metabolism , Water Pollutants, Chemical/metabolism , Nitrogen/isolation & purification , Oxygen/chemistry , Particulate Matter/chemistry , Phosphorus/isolation & purification , Water Pollutants, Chemical/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL