Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436493

ABSTRACT

BACKGROUND: With recent interest in patient-specific dosimetry for radiopharmaceutical therapy (RPT) and selective internal radiation therapy (SIRT), an increasing number of voxel-based algorithms are being evaluated. Monte Carlo (MC) radiation transport, generally considered to be the most accurate among different methods for voxel-level absorbed dose estimation, can be computationally inefficient for routine clinical use. PURPOSE: This work demonstrates a recently implemented grid-based linear Boltzmann transport equation (LBTE) solver for fast and accurate voxel-based dosimetry in RPT and SIRT and benchmarks it against MC. METHODS: A deterministic LBTE solver (Acuros MRT) was implemented within a commercial RPT dosimetry package (Velocity 4.1). The LBTE is directly discretized using an adaptive mesh refined grid and then the coupled photon-electron radiation transport is iteratively solved inside specified volumes to estimate radiation doses from both photons and charged particles in heterogeneous media. To evaluate the performance of the LBTE solver for RPT and SIRT applications, 177 Lu SPECT/CT, 90 Y PET/CT, and 131 I SPECT/CT images of phantoms and patients were used. Multiple lesions (2-1052 mL) and normal organs were delineated for each study. Voxel dosimetry was performed with the LBTE solver, dose voxel kernel (DVK) convolution with density correction, and a validated in-house MC code using the same time-integrated activity and density maps as input to the different dose engines. The resulting dose maps, difference maps, and dose-volume-histogram (DVH) metrics were compared, to assess the voxel-level agreement. Evaluation of mean absorbed dose included comparison with structure-level estimates from OLINDA. RESULTS: In the phantom inserts/compartments, the LBTE solver versus MC and DVK convolution demonstrated good agreement with mean absorbed dose and DVH metrics agreeing to within 5% except for the D90 and D70 metrics of a very low activity concentration insert of 90 Y where the agreement was within 15%. In the patient studies (five patients imaged after 177 Lu DOTATATE RPT, five after 90 Y SIRT, and two after 131 I radioimmunotherapy), in general, there was better agreement between the LBTE solver and MC than between LBTE solver and DVK convolution for mean absorbed dose and voxel-level evaluations. Across all patients for all three radionuclides, for soft tissue structures (kidney, liver, lesions), the mean absorbed dose estimates from the LBTE solver were in good agreement with those from MC (median difference < 1%, maximum 9%) and those from DVK (median difference < 5%, maximum 9%). The LBTE and OLINDA estimates for mean absorbed dose in kidneys and liver agreed to within 10%, but differences for lesions were larger with a maximum 14% for 177 Lu, 23% for 90 Y, and 26% for 131 I. For bone regions, the agreement in mean absorbed doses between LBTE and both MC and DVK were similar (median < 11%, max 11%) while for lung the agreement between LBTE and MC (median < 1%, max 8%) was substantially better than between LBTE and DVK (median < 16%, max 33%). Voxel level estimates for soft tissue structures also showed good agreement between the LBTE solver and both MC and DVK with a median difference < 5% (maximum < 13%) for the DVH metrics with all three radionuclides. The largest difference in DVH metrics was for the D90 and D70 metric in lung and bone where the uptake was low. Here, the difference between LBTE and MC had a median value < 14% (maximum 23%) for bone and < 4% (maximum 37%) for lung, while the corresponding differences between LBTE and DVK were < 23% (maximum 31%) and < 67% (maximum 313%), respectively. For a typical patient with a matrix size of 166 × 166 × 129 (voxel size 3 × 3 × 3 mm3 ), voxel dosimetry using the LBTE solver was as fast as ∼2 min on a desktop computer. CONCLUSION: Having established good agreement between the LBTE solver and MC for RPT and SIRT applications, the LBTE solver is a viable option for voxel dosimetry that can be faster than MC. Further analysis is being performed to encompass the broad range of radionuclides and conditions encountered clinically.

2.
J Nucl Med ; 65(1): 125-131, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37884334

ABSTRACT

Implementation of radiopharmaceutical therapy dosimetry varies depending on the clinical application, dosimetry protocol, software, and ultimately the operator. Assessing clinical dosimetry accuracy and precision is therefore a challenging task. This work emphasizes some pitfalls encountered during a structured analysis, performed on a single-patient dataset consisting of SPECT/CT images by various participants using a standard protocol and clinically approved commercial software. Methods: The clinical dataset consisted of the dosimetric study of a patient administered with [177Lu]Lu-DOTATATE at Tygerberg Hospital, South Africa, as a part of International Atomic Energy Agency-coordinated research project E23005. SPECT/CT images were acquired at 5 time points postinjection. Patient and calibration images were reconstructed on a workstation, and a calibration factor of 122.6 Bq/count was derived independently and provided to the participants. A standard dosimetric protocol was defined, and PLANETDose (version 3.1.1) software was installed at 9 centers to perform the dosimetry of 3 treatment cycles. The protocol included rigid image registration, segmentation (semimanual for organs, activity threshold for tumors), and dose voxel kernel convolution of activity followed by absorbed dose (AD) rate integration to obtain the ADs. Iterations of the protocol were performed by participants individually and within collective training, the results of which were analyzed for dosimetric variability, as well as for quality assurance and error analysis. Intermediary checkpoints were developed to understand possible sources of variation and to differentiate user error from legitimate user variability. Results: Initial dosimetric results for organs (liver and kidneys) and lesions showed considerable interoperator variability. Not only was the generation of intermediate checkpoints such as total counts, volumes, and activity required, but also activity-to-count ratio, activity concentration, and AD rate-to-activity concentration ratio to determine the source of variability. Conclusion: When the same patient dataset was analyzed using the same dosimetry procedure and software, significant disparities were observed in the results despite multiple sessions of training and feedback. Variations due to human error could be minimized or avoided by performing intensive training sessions, establishing intermediate checkpoints, conducting sanity checks, and cross-validating results across physicists or with standardized datasets. This finding promotes the development of quality assurance in clinical dosimetry.


Subject(s)
Neoplasms , Radiopharmaceuticals , Humans , Radiopharmaceuticals/therapeutic use , Radiometry/methods , Single Photon Emission Computed Tomography Computed Tomography , Liver
3.
Phys Med ; 96: 101-113, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35276403

ABSTRACT

PURPOSE: Monte Carlo modelling of SPECT imaging in Molecular Radiotherapy can improve activity quantification. Until now, SPECT modelling with GATE only considered circular orbit (CO) acquisitions. This cannot reproduce auto-contour acquisitions, where the detector head moves close to the patient to improve image resolution. The aim of this work is to develop and validate an auto-contouring step-and-shoot acquisition mode for GATE SPECT modelling. METHODS: 177Lu and 131I SPECT experimental acquisitions performed on a Siemens Symbia T2 and GE Discovery 670 gamma camera, respectively, were modelled. SPECT projections were obtained for a cylindrical Jaszczak phantom and a lung and spine phantom. Detector head parameters (radial positions and acquisition angles) were extracted from the experimental projections to model the non-circular orbit (NCO) detector motion. The gamma camera model was validated against the experimental projections obtained with the cylindrical Jaszczak (177Lu) and lung and spine phantom (131I). Then, 177Lu and 131I CO and NCO SPECT projections were simulated to validate the impact of explicit NCO modelling on simulated projections. RESULTS: Experimental and simulated SPECT images were compared using the gamma index, and were in good agreement with gamma index passing rate (GIPR) and gammaavg of 96.27%, 0.242 (177Lu) and 92.89%, 0.36 (131I). Then, simulated 177Lu and 131I CO and NCO SPECT projections were compared. The GIPR, gammaavg between the two gamma camera motions was 99.85%, 0.108 for 177Lu and 75.58%, 0.6 for 131I. CONCLUSION: This work thereby justifies the need for auto-contouring modelling for isotopes with high septal penetration.


Subject(s)
Iodine Radioisotopes , Tomography, Emission-Computed, Single-Photon , Gamma Cameras , Humans , Iodine Radioisotopes/therapeutic use , Monte Carlo Method , Phantoms, Imaging , Tomography, Emission-Computed, Single-Photon/methods
4.
Phys Med ; 85: 24-31, 2021 May.
Article in English | MEDLINE | ID: mdl-33957577

ABSTRACT

PURPOSE: Patient-specific dosimetry in MRT relies on quantitative imaging, pharmacokinetic assessment and absorbed dose calculation. The DosiTest project was initiated to evaluate the uncertainties associated with each step of the clinical dosimetry workflow through a virtual multicentric clinical trial. This work presents the generation of simulated clinical SPECT datasets based on GATE Monte Carlo modelling with its corresponding experimental CT image, which can subsequently be processed by commercial image workstations. METHODS: This study considers a therapy cycle of 6.85 GBq 177Lu-labelled DOTATATE derived from an IAEA-Coordinated Research Project (E23005) on "Dosimetry in Radiopharmaceutical therapy for personalised patient treatment". Patient images were acquired on a GE Infinia-Hawkeye 4 gamma camera using a medium energy (ME) collimator. Simulated SPECT projections were generated based on experimental time points and validated against experimental SPECT projections using flattened profiles and gamma index. The simulated projections were then incorporated into the patient SPECT/CT DICOM envelopes for processing and their reconstruction within a commercial image workstation. RESULTS: Gamma index passing rate (2% - 1 pixel criteria) between 95 and 98% and average gamma between 0.28 and 0.35 among different time points revealed high similarity between simulated and experimental images. Image reconstruction of the simulated projections was successful on HERMES and Xeleris workstations, a major step forward for the initiation of a multicentric virtual clinical dosimetry trial based on simulated SPECT/CT images. CONCLUSIONS: Realistic 177Lu patient SPECT projections were generated in GATE. These modelled datasets will be circulated to different clinical departments to perform dosimetry in order to assess the uncertainties in the entire dosimetric chain.


Subject(s)
Radiometry , Tomography, Emission-Computed, Single-Photon , Gamma Cameras , Humans , Monte Carlo Method , Phantoms, Imaging , Single Photon Emission Computed Tomography Computed Tomography
5.
Phys Med Biol ; 66(10)2021 05 14.
Article in English | MEDLINE | ID: mdl-33770774

ABSTRACT

Built on top of the Geant4 toolkit, GATE is collaboratively developed for more than 15 years to design Monte Carlo simulations of nuclear-based imaging systems. It is, in particular, used by researchers and industrials to design, optimize, understand and create innovative emission tomography systems. In this paper, we reviewed the recent developments that have been proposed to simulate modern detectors and provide a comprehensive report on imaging systems that have been simulated and evaluated in GATE. Additionally, some methodological developments that are not specific for imaging but that can improve detector modeling and provide computation time gains, such as Variance Reduction Techniques and Artificial Intelligence integration, are described and discussed.


Subject(s)
Artificial Intelligence , Software , Computer Simulation , Monte Carlo Method , Tomography, X-Ray Computed
6.
Med Phys ; 47(9): 4602-4615, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32632928

ABSTRACT

PURPOSE: The aim of this study was to quantitatively compare five commercial dosimetric software platforms based on the analysis of clinical datasets of patients who benefited from peptide receptor radionuclide therapy (PRRT) with 177 Lu-DOTATATE (LUTATHERA® ). METHODS: The dosimetric analysis was performed on two patients during two cycles of PRRT with 177 Lu. Single photon emission computed tomography/computed tomography images were acquired at 4, 24, 72, and 192 h post injection. Reconstructed images were generated using Dosimetry Toolkit® (DTK) from Xeleris™ and HybridRecon-Oncology version_1.3_Dicom (HROD) from HERMES. Reconstructed images using DTK were analyzed using the same software to calculate time-integrated activity coefficients (TIAC), and mean absorbed doses were estimated using OLINDA/EXM V1.0 with mass correction. Reconstructed images from HROD were uploaded into PLANET® OncoDose from DOSIsoft, STRATOS from Phillips, Hybrid Dosimetry Module™ from HERMES, and SurePlan™ MRT from MIM. Organ masses, TIACs, and mean absorbed doses were calculated from each application using their recommendations. RESULTS: The majority of organ mass estimates varied by <9.5% between all platforms. The highest variability for TIAC results between platforms was seen for the kidneys (28.2%) for the two patients and the two treatment cycles. Relative standard deviations in mean absorbed doses were slightly higher compared with those observed for TIAC, but remained of the same order of magnitude between all platforms. CONCLUSIONS: When applying a similar processing approach, results obtained were of the same order of magnitude regardless of the platforms used. However, the comparison of the performances of currently available platforms is still difficult as they do not all address the same parts of the dosimetric analysis workflow. In addition, the way in which data are handled in each part of the chain from data acquisition to absorbed doses may be different, which complicates the comparison exercise. Therefore, the dissemination of commercial solutions for absorbed dose calculation calls for the development of tools and standards allowing for the comparison of the performances between dosimetric software platforms.


Subject(s)
Neuroendocrine Tumors , Humans , Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/radiotherapy , Octreotide/therapeutic use , Radioisotopes , Radiopharmaceuticals , Receptors, Peptide , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...