Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 9609, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-29942007

ABSTRACT

The coherent control of optical phonons has been experimentally demonstrated in various physical systems. While the transient dynamics for optical phonons can be explained by phenomenological models, the coherent control experiment cannot be explained due to the quantum interference. Here, we theoretically propose the generation and detection processes of the optical phonons and experimentally confirm our theoretical model using the diamond optical phonon by the doublepump-probe type experiment.

2.
J Chem Phys ; 145(2): 024504, 2016 Jul 14.
Article in English | MEDLINE | ID: mdl-27421417

ABSTRACT

The atomic and electronic dynamics in the topological insulator (TI) Bi2Te3 under strong photoexcitation were characterized with time-resolved electron diffraction and time-resolved mid-infrared spectroscopy. Three-dimensional TIs characterized as bulk insulators with an electronic conduction surface band have shown a variety of exotic responses in terms of electronic transport when observed under conditions of applied pressure, magnetic field, or circularly polarized light. However, the atomic motions and their correlation between electronic systems in TIs under strong photoexcitation have not been explored. The artificial and transient modification of the electronic structures in TIs via photoinduced atomic motions represents a novel mechanism for providing a comparable level of bandgap control. The results of time-domain crystallography indicate that photoexcitation induces two-step atomic motions: first bismuth and then tellurium center-symmetric displacements. These atomic motions in Bi2Te3 trigger 10% bulk bandgap narrowing, which is consistent with the time-resolved mid-infrared spectroscopy results.

3.
J Phys Chem Lett ; 6(13): 2463-8, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-26266720

ABSTRACT

Using 42 nm high harmonic pulses, the dissociation dynamics of 1,2-butadiene was investigated by time-resolved photoelectron spectroscopy (TRPES), enabling us to observe dynamical changes of multiple molecular orbitals (MOs) with higher temporal resolution than conventional light sources. Because each lower-lying occupied MO has particular spatial electron distribution, the structural dynamics of photochemical reaction can be revealed. On the femtosecond time scale, a short-lived excited state with a lifetime of 37 ± 15 fs and the coherent oscillation of the photoelectron yield stimulated by Hertzberg-Teller coupling were observed. Ab initio molecular dynamics simulations in the electronically excited state find three relaxation pathways from the vertically excited structure in S1 to the ground state, and one of them is the dominant relaxation pathway, observed as the short-lived excited state. On the picosecond time scale, the photoelectron yields related to the C-C bond decreased upon photoexcitation, indicating C-C bond cleavage.


Subject(s)
Butadienes/chemistry , Molecular Dynamics Simulation/statistics & numerical data , Photoelectron Spectroscopy/methods , Electrons , Pulse , Time Factors
4.
Sci Rep ; 4: 4456, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24662682

ABSTRACT

Electronic and phonon coherence are usually measured in different ways because their time-scales are very different. In this paper we simultaneously measure the electronic and phonon coherence using the interference of the electron-phonon correlated states induced by two phase-locked optical pulses. Interferometric visibility showed that electronic coherence remained in a semiconducting GaAs crystal until ~40 fs; in contrast, electronic coherence disappeared within 10 fs in a semimetallic Bi crystal at room temperature, differing substantially from the long damping time of its phonon coherence, in the picosecond range.

5.
Phys Rev Lett ; 97(20): 200404, 2006 Nov 17.
Article in English | MEDLINE | ID: mdl-17155667

ABSTRACT

We calculate the exact Landau-Zener transition probabilities for a qubit with an arbitrary linear coupling to a bath at zero temperature. The final quantum state exhibits a peculiar entanglement between the qubit and the bath. In the special case of diagonal coupling, the bath does not influence the transition probability, whatever the speed of the Landau-Zener sweep. It is proposed to use Landau-Zener transitions to determine both the reorganization energy and the integrated spectral density of the bath. Possible applications include circuit QED and molecular nanomagnets.

SELECTION OF CITATIONS
SEARCH DETAIL
...