Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Transl Res ; 9(7): 3293-3303, 2017.
Article in English | MEDLINE | ID: mdl-28804547

ABSTRACT

Lung cancer, primarily non-small cell lung cancer (NSCLC), is the leading cause of cancer mortality and the prognosis of patients with advanced or metastatic NSCLC is poor. Despite significant advances in diagnosis and treatment, little improvement has been seen in NSCLC mortality. Recently, Intratumoral Chemotherapy, a direct local delivery of chemotherapeutic drugs, has shown promise in clinical studies. However, toxicity and high dosage of chemotherapeutic agents used for treatment are a limitation. Moreover, these drugs damage indiscriminately, cancerous as well as normal tissues. Thus, a novel therapeutic strategy that targets only malignant tissue sparing normal tissue becomes an urgent issue. Ephrin receptor-A2 (EphA2), a new biomarker, is over-expressed in NSCLC, but not on normal epithelial cells. Receptor EphA2 is a cell surface protein, which upon binding to its ligand EphrinA1 undergo phosphorylation and degradation which attenuates NSCLC growth. Targeting the tumor, sparing the normal tissue and enhancing the therapeutic effects of ligand proteins are the goal of this project. Thus a novel method, intratumoral EphA2 targeted therapy, has been developed to target the oncogenic receptors on tumor tissue by using albumin mesosphere (AMS) conjugated ephrinA1 in mice bearing NSCLC tumors.

2.
Int J Nanomedicine ; 8: 4481-94, 2013.
Article in English | MEDLINE | ID: mdl-24293999

ABSTRACT

MicroRNAs (miRs) are small noncoding RNA sequences that negatively regulate the expression of target genes by posttranscriptional repression. miRs are dysregulated in various diseases, including cancer. let-7a miR, an antioncogenic miR, is downregulated in lung cancers. Our earlier studies demonstrated that let-7a miR inhibits tumor growth in malignant pleural mesothelioma (MPM) and could be a potential therapeutic against lung cancer. EphA2 (ephrin type-A receptor 2) tyrosine kinase is overexpressed in most cancer cells, including MPM and non-small-cell lung cancer (NSCLC) cells. Ephrin-A1, a specific ligand of the EphA2 receptor, inhibits cell proliferation and migration. In this study, to enhance the delivery of miR, the miRs were encapsulated in the DOTAP (N-[1-(2.3-dioleoyloxy)propyl]-N,N,N-trimethyl ammonium)/Cholesterol/DSPE (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[cyanur(polyethylene glycol)-2000])-PEG (polyethylene glycol)-cyanur liposomal nanoparticles (LNP) and ephrin-A1 was conjugated on the surface of LNP to target receptor EphA2 on lung cancer cells. The LNP with an average diameter of 100 nm showed high stability, low cytotoxicity, and high loading efficiency of precursor let-7a miR and ephrin-A1. The ephrin-A1 conjugated LNP (ephrin-A1-LNP) and let-7a miR encapsulated LNP (miR-LNP) showed improved transfection efficiency against MPM and NSCLC. The effectiveness of targeted delivery of let-7a miR encapsulated ephrin-A1 conjugated LNP (miR-ephrin-A1-LNP) was determined on MPM and NSCLC tumor growth in vitro. miR-ephrin-A1-LNP significantly increased the delivery of let-7a miR in lung cancer cells when compared with free let-7a miR. In addition, the expression of target gene Ras was significantly repressed following miR-ephrin-A1-LNP treatment. Furthermore, the miR-ephrin-A1-LNP complex significantly inhibited MPM and NSCLC proliferation, migration, and tumor growth. Our results demonstrate that the engineered miR-ephrin-A1-LNP complex is an effective carrier for the targeted delivery of small RNA molecules to lung cancer cells. This could be a potential therapeutic approach against tumors overexpressing the EphA2 receptor.


Subject(s)
Antineoplastic Agents/pharmacology , Ephrin-A1/chemistry , Liposomes/pharmacology , Lung Neoplasms , MicroRNAs/pharmacology , Nanoparticles/chemistry , Antineoplastic Agents/chemistry , Carcinoma, Non-Small-Cell Lung , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Delivery Systems/methods , Ephrin-A1/metabolism , Humans , Liposomes/chemistry , MicroRNAs/chemistry , MicroRNAs/genetics , Transfection/methods
3.
Thromb Haemost ; 88(6): 919-23, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12529739

ABSTRACT

Intracranial hemorrhage in a young woman with systemic lupus erythematosus necessitated two surgical evacuations. In the absence of a family history of bleeding, clot solubility in urea suggested a factor XIII (FXIII) inhibitor. The patient's IgG bound well to the virgin and the thrombin-modified zymogen ensemble (A(2)B(2) and A(2)'B(2)) and to the free rA(2) but reacted poorly with the thrombin-modified rA(2)'. Since the IgG did not block the thrombin-catalyzed proteolysis of A subunits nor the dissociation of the A(2)'B(2), its action might be to interfere with the release of activation peptides from the thrombin-cleaved zymogen, hindering the conformational change necessary for generating FXIIIa. Treatment with cryoprecipitate and cyclophosphamide arrested the hemorrhage and almost neutralized the antibody so that the patient's clot became insoluble in urea and showed a close to normally crosslinked gamma-gamma and alpha(n) fibrin chain profile. Nevertheless, she still has detectable anti-FXIII antibody and may be at risk for hemorrhage.


Subject(s)
Autoantibodies/blood , Factor XIII/immunology , Intracranial Hemorrhages/etiology , Lupus Erythematosus, Systemic/complications , Adult , Blood Transfusion , Cyclophosphamide/therapeutic use , Factor XIII/antagonists & inhibitors , Female , Humans , Intracranial Hemorrhages/immunology , Intracranial Hemorrhages/therapy , Lupus Erythematosus, Systemic/immunology , Plasma , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...