Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
1.
Biotechnol Prog ; : e3463, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568030

ABSTRACT

Alzheimer's disease and other tauopathies are characterized by the misfolding and aggregation of the tau protein into oligomeric and fibrillar structures. Antibodies against tau play an increasingly important role in studying these neurodegenerative diseases and the generation of tools to diagnose and treat them. The development of antibodies that recognize tau protein aggregates, however, is hindered by complex immunization and antibody selection strategies and limitations to antigen presentation. Here, we have taken a facile approach to identify single-domain antibodies, or nanobodies, that bind to many forms of tau by screening a synthetic yeast surface display nanobody library against monomeric tau and creating multivalent versions of our lead nanobody, MT3.1, to increase its avidity for tau aggregates. We demonstrate that MT3.1 binds to tau monomer, oligomers, and fibrils, as well as pathogenic tau from a tauopathy mouse model, despite being identified through screens against monomeric tau. Through epitope mapping, we discovered binding epitopes of MT3.1 contain the key motif VQIXXK which drives tau aggregation. We show that our bivalent and tetravalent versions of MT3.1 have greatly improved binding ability to tau oligomers and fibrils compared to monovalent MT3.1. Our results demonstrate the utility of our nanobody screening and multivalent design approach in developing nanobodies that bind amyloidogenic protein aggregates. This approach can be extended to the generation of multivalent nanobodies that target other amyloid proteins and has the potential to advance the research and treatment of neurodegenerative diseases.

2.
medRxiv ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38562743

ABSTRACT

Type 2 diabetes (T2D) is a common forerunner of neurodegeneration and dementia, including Alzheimer's Disease (AD), yet the underlying mechanisms remain unresolved. Individuals of Mexican descent living in South Texas have increased prevalence of comorbid T2D and early onset AD, despite low incidence of the predisposing APOE-e4 variant and an absence of the phenotype among relatives residing in Mexico - suggesting a role for environmental factors in coincident T2D and AD susceptibility. Here, in a small clinical trial, we show dysbiosis of the human gut microbiome could contribute to neuroinflammation and risk for AD in this population. Divergent Gastrointestinal Symptom Rating Scale (GSRS) responses, despite no differences in expressed dietary preferences, provided the first evidence for altered gut microbial ecology among T2D subjects (sT2D) versus population-matched healthy controls (HC). Metataxonomic 16S rRNA sequencing of participant stool revealed a decrease in alpha diversity of sT2D versus HC gut communities and identified BMI as a driver of gut community structure. Linear discriminant analysis effect size (LEfSe) identified a significant decrease in the relative abundance of the short-chain fatty acid-producing taxa Lachnospiraceae, Faecalibacterium, and Alistipes and an increase in pathobionts Escherichia-Shigella, Enterobacter, and Clostridia innocuum among sT2D gut microbiota, as well as differentially abundant gene and metabolic pathways. These results suggest characterization of the gut microbiome of individuals with T2D could identify key actors among "disease state" microbiota which may increase risk for or accelerate the onset of neurodegeneration. Furthermore, they identify candidate microbiome-targeted approaches for prevention and treatment of neuroinflammation in AD.

3.
Biochem Biophys Rep ; 38: 101687, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38545462

ABSTRACT

Aggregation of α-synuclein into oligomers and fibrils is associated with numerous neurodegenerative diseases such as Parkinson's disease (PD). Although the identity of the pathogenic species formed during the aggregation process is still under active debate, mounting evidence suggests that small oligomeric species rather than fibrillar aggregates are real toxic species. Isolation and characterization of small oligomers is essential to developing therapeutic strategies to prevent oligomer formation. Preparation of misfolded oligomeric species for biophysical characterization is, however, a great challenge due to their heterogenous, transient nature. Here we report the preparation of toxic and non-toxic α-synuclein oligomeric species formed at different pH values in the presence of lipid vesicles that mimic mitochondria membranes containing cardiolipin. Biophysical characterization of the lipid-induced α-synuclein oligomeric assemblies revealed that α-synuclein oligomers formed at pH 7.4 have higher surface hydrophobicity than the aggregates formed at pH 6.0. In addition, the high-pH oligomers were shown to exhibit higher toxicity than the low-pH aggregates. Structural, dynamic properties of the oligomers were also investigated by using circular dichroism (CD) and NMR spectroscopy. Our CD analyses revealed that the two oligomeric species have distinct molecular conformations, and 2D 1H/15N HSQC NMR experiments suggested that the high-pH oligomers have more extended dynamic regions than the low-pH aggregates. The distinct structural and dynamic properties of the oligomers might be associated with their different cytotoxic properties.

4.
ACS Chem Neurosci ; 15(7): 1366-1377, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38503425

ABSTRACT

The pathological misfolding and aggregation of the microtubule associated protein tau (MAPT), a full length Tau2N4R with 441aa, is considered the principal disease relevant constituent in tauopathies including Alzheimer's disease (AD) with an imbalanced ratio in 3R/4R isoforms. The exact cellular fluid composition, properties, and changes that coincide with tau misfolding, seed formation, and propagation events remain obscure. The proteostasis network, along with the associated osmolytes, is responsible for maintaining the presence of tau in its native structure or dealing with misfolding. In this study, for the first time, the roles of natural brain osmolytes are being investigated for their potential effects on regulating the conformational stability of the tau monomer (tauM) and its propensity to aggregate or disaggregate. Herein, the effects of physiological osmolytes myo-inositol, taurine, trimethyl amine oxide (TMAO), betaine, sorbitol, glycerophosphocholine (GPC), and citrulline on tau's aggregation state were investigated. The overall results indicate the ability of sorbitol and GPC to maintain the monomeric form and prevent aggregation of tau, whereas myo-inositol, taurine, TMAO, betaine, and citrulline promote tau aggregation to different degrees, as revealed by protein morphology in atomic force microscopy images. Biochemical and biophysical methods also revealed that tau proteins adopt different conformations under the influence of these osmolytes. TauM in the presence of all osmolytes expressed no toxicity when tested by a lactate dehydrogenase assay. Investigating the conformational stability of tau in the presence of osmolytes may provide a better understanding of the complex nature of tau aggregation in AD and the protective and/or chaotropic nature of osmolytes.


Subject(s)
Alzheimer Disease , Methylamines , tau Proteins , Humans , tau Proteins/metabolism , Betaine , Citrulline , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Taurine/pharmacology , Inositol/metabolism , Sorbitol/metabolism
5.
Methods Mol Biol ; 2754: 147-183, 2024.
Article in English | MEDLINE | ID: mdl-38512666

ABSTRACT

Tau oligomers have been shown to be the main toxic tau species in several neurodegenerative disorders. To study tau oligomers, we have developed reagents and established methods for the reliable preparation, isolation, and detection of tau oligomers as well as their seeding and propagation both in vitro and in vivo. Detailed below are methods for isolation of tau oligomers from brain tissues and detection of tau oligomers using tau oligomer-specific antibodies by biochemical, immunohistochemical, and biophysical methods. Further, methods for evaluating the biological activity of the tau oligomers including their effects on synaptic function, seeding, and propagation in cell models and in vivo are also described.


Subject(s)
Alzheimer Disease , tau Proteins , Humans , tau Proteins/chemistry , Antibodies , Biophysics
6.
bioRxiv ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38405854

ABSTRACT

Importance: This study identifies and quantifies diverse pathological tau isoforms in the retina of both early and advanced-stage Alzheimer's disease (AD) and determines their relationship with disease status. Objective: A case-control study was conducted to investigate the accumulation of retinal neurofibrillary tangles (NFTs), paired helical filament (PHF)-tau, oligomeric tau (oligo-tau), hyperphosphorylated tau (p-tau), and citrullinated tau (Cit-tau) in relation to the respective brain pathology and cognitive dysfunction in mild cognitively impaired (MCI) and AD dementia patients versus normal cognition (NC) controls. Design setting and participants: Eyes and brains from donors diagnosed with AD, MCI (due to AD), and NC were collected (n=75 in total), along with clinical and neuropathological data. Brain and retinal cross-sections-in predefined superior-temporal and inferior-temporal (ST/IT) subregions-were subjected to histopathology analysis or Nanostring GeoMx digital spatial profiling. Main outcomes and measure: Retinal burden of NFTs (pretangles and mature tangles), PHF-tau, p-tau, oligo-tau, and Cit-tau was assessed in MCI and AD versus NC retinas. Pairwise correlations revealed associations between retinal and brain parameters and cognitive status. Results: Increased retinal NFTs (1.8-fold, p=0.0494), PHF-tau (2.3-fold, p<0.0001), oligo-tau (9.1-fold, p<0.0001), CitR 209 -tau (4.3-fold, p<0.0001), pSer202/Thr205-tau (AT8; 4.1-fold, p<0.0001), and pSer396-tau (2.8-fold, p=0.0015) were detected in AD patients. Retinas from MCI patients showed significant increases in NFTs (2.0-fold, p=0.0444), CitR 209 -tau (3.5-fold, p=0.0201), pSer396-tau (2.6-fold, p=0.0409), and, moreover, oligo-tau (5.8-fold, p=0.0045). Nanostring GeoMx quantification demonstrated upregulated retinal p-tau levels in MCI patients at phosphorylation sites of Ser214 (2.3-fold, p=0.0060), Ser396 (1.8-fold, p=0.0052), Ser404 (2.4-fold, p=0.0018), and Thr231 (3.3-fold, p=0.0028). Strong correlations were found between retinal tau forms to paired-brain pathology and cognitive status: a) retinal oligo-tau vs. Braak stage (r=0.60, P=0.0002), b) retinal PHF-tau vs. ABC average score (r=0.64, P=0.0043), c) retinal pSer396-tau vs. brain NFTs (r=0.68, P<0.0001), and d) retinal pSer202/Thr205-tau vs. MMSE scores (r= -0.77, P=0.0089). Conclusions and Relevance: This study reveals increases in immature and mature retinal tau isoforms in MCI and AD patients, highlighting their relationship with brain pathology and cognition. The data provide strong incentive to further explore retinal tauopathy markers that may be useful for early detection and monitoring of AD staging through noninvasive retinal imaging.

7.
J Biol Chem ; 300(2): 105628, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38295729

ABSTRACT

Hexanucleotide repeat expansion in C9orf72 is one of the most common causes of amyotrophic lateral sclerosis and frontotemporal dementia. The hexanucleotide expansion, formed by GGGGCC (G4C2) repeats, leads to the production of five dipeptide protein repeats (DPRs) via repeat-associated non-AUG translation. Among the five dipeptide repeats, Gly-Arg, Pro-Arg, and Gly-Ala form neuronal inclusions that contain aggregates of the peptides. Several studies have attempted to model DPR-associated toxicity using various repeat lengths, which suggests a unique conformation that is cytotoxic and is independent of the repeat length. However, the structural characteristics of DPR aggregates have yet to be determined. Increasing evidence suggests that soluble species, such as oligomers, are the main cause of toxicity in proteinopathies, such as Alzheimer's and Parkinson's disease. To investigate the ability of DPRs to aggregate and form toxic oligomers, we adopted a reductionist approach using small dipeptide repeats of 3, 6, and 12. This study shows that DPRs, particularly glycine-arginine and proline-arginine, form oligomers that exhibit distinct dye-binding properties and morphologies. Importantly, we also identified toxic DPR oligomers in amyotrophic lateral sclerosis and frontotemporal dementia postmortem brains that are morphologically similar to those generated recombinantly. This study demonstrates that, similar to soluble oligomers formed by various amyloid proteins, DPR oligomers are toxic, independent of their repeat length.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Frontotemporal Dementia/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , DNA Repeat Expansion , Dipeptides/chemistry , Arginine , Amyloidogenic Proteins , Glycine
8.
Alzheimers Dement ; 20(1): 709-727, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37814508

ABSTRACT

Aging, tau pathology, and chronic inflammation in the brain play crucial roles in synaptic loss, neurodegeneration, and cognitive decline in tauopathies, including Alzheimer's disease. Senescent cells accumulate in the aging brain, accelerate the aging process, and promote tauopathy progression through their abnormal inflammatory secretome known as the senescence-associated secretory phenotype (SASP). Tau oligomers (TauO)-the most neurotoxic tau species-are known to induce senescence and the SASP, which subsequently promote neuropathology, inflammation, oxidative stress, synaptic dysfunction, neuronal death, and cognitive dysfunction. TauO, brain inflammation, and senescence are associated with heterogeneity in tauopathy progression and cognitive decline. However, the underlying mechanisms driving the disease heterogeneity remain largely unknown, impeding the development of therapies for tauopathies. Based on clinical and preclinical evidence, this review highlights the critical role of TauO and senescence in neurodegeneration. We discuss key knowledge gaps and potential strategies for targeting senescence and TauO to treat tauopathies. HIGHLIGHTS: Senescence, oligomeric Tau (TauO), and brain inflammation accelerate the aging process and promote the progression of tauopathies, including Alzheimer's disease. We discuss their role in contributing to heterogeneity in tauopathy and cognitive decline. We highlight strategies to target senescence and TauO to treat tauopathies while addressing key knowledge gaps.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Encephalitis , Tauopathies , Humans , Alzheimer Disease/pathology , tau Proteins/metabolism , Tauopathies/pathology , Brain/pathology , Encephalitis/complications , Encephalitis/pathology , Cognitive Dysfunction/pathology , Inflammation
9.
Prog Neurobiol ; 232: 102562, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38135105

ABSTRACT

The misfolding and aggregation of the tau protein into neurofibrillary tangles constitutes a central feature of tauopathies. Traumatic brain injury (TBI) has emerged as a potential risk factor, triggering the onset and progression of tauopathies. Our previous research revealed distinct polymorphisms in soluble tau oligomers originating from single versus repetitive mild TBIs. However, the mechanisms orchestrating the dissemination of TBI brain-derived tau polymorphs (TBI-BDTPs) remain elusive. In this study, we explored whether TBI-BDTPs could initiate pathological tau formation, leading to distinct pathogenic trajectories. Wild-type mice were exposed to TBI-BDTPs from sham, single-blast (SB), or repeated-blast (RB) conditions, and their memory function was assessed through behavioral assays at 2- and 8-month post-injection. Our findings revealed that RB-BDTPs induced cognitive and motor deficits, concurrently fostering the emergence of toxic tau aggregates within the injected hippocampus. Strikingly, this tau pathology propagated to cortical layers, intensifying over time. Importantly, RB-BDTP-exposed animals displayed heightened glial cell activation, NLRP3 inflammasome formation, and increased TBI biomarkers, particularly triggering the aggregation of S100B, which is indicative of a neuroinflammatory response. Collectively, our results shed light on the intricate mechanisms underlying TBI-BDTP-induced tau pathology and its association with neuroinflammatory processes. This investigation enhances our understanding of tauopathies and their interplay with neurodegenerative and inflammatory pathways following traumatic brain injury.


Subject(s)
Brain Injuries, Traumatic , Tauopathies , Mice , Animals , tau Proteins/metabolism , Brain Injuries, Traumatic/complications , Tauopathies/metabolism , Neurofibrillary Tangles/metabolism , Inflammation/complications , Disease Models, Animal
10.
Proteins ; 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37530227

ABSTRACT

Before the controversial approval of humanized monoclonal antibody lecanemab, which binds to the soluble amyloid-ß protofibrils, all the treatments available earlier, for Alzheimer's disease (AD) were symptomatic. The researchers are still struggling to find a breakthrough in AD therapeutic medicine, which is partially attributable to lack in understanding of the structural information associated with the intrinsically disordered proteins and amyloids. One of the major challenges in this area of research is to understand the structural diversity of intrinsically disordered proteins under in vitro conditions. Therefore, in this review, we have summarized the in vitro applications of biophysical methods, which are aimed to shed some light on the heterogeneity, pathogenicity, structures and mechanisms of the intrinsically disordered protein aggregates associated with proteinopathies including AD. This review will also rationalize some of the strategies in modulating disease-relevant pathogenic protein entities by small molecules using structural biology approaches and biophysical characterization. We have also highlighted tools and techniques to simulate the in vivo conditions for native and cytotoxic tau/amyloids assemblies, urge new chemical approaches to replicate tau/amyloids assemblies similar to those in vivo conditions, in addition to designing novel potential drugs.

11.
J Biol Chem ; 299(9): 105122, 2023 09.
Article in English | MEDLINE | ID: mdl-37536631

ABSTRACT

The ß-sheet-rich amyloid core is the defining feature of protein aggregates associated with neurodegenerative disorders. Recent investigations have revealed that there exist multiple examples of the same protein, with the same sequence, forming a variety of amyloid cores with distinct structural characteristics. These structural variants, termed as polymorphs, are hypothesized to influence the pathological profile and the progression of different neurodegenerative diseases, giving rise to unique phenotypic differences. Thus, identifying the origin and properties of these structural variants remain a focus of studies, as a preliminary step in the development of therapeutic strategies. Here, we review the potential role of the flanking regions of amyloid cores in inducing polymorphism. These regions, adjacent to the amyloid cores, show a preponderance for being structurally disordered, imbuing them with functional promiscuity. The dynamic nature of the flanking regions can then manifest in the form of conformational polymorphism of the aggregates. We take a closer look at the sequences flanking the amyloid cores, followed by a review of the polymorphic aggregates of the well-characterized proteins amyloid-ß, α-synuclein, Tau, and TDP-43. We also consider different factors that can potentially influence aggregate structure and how these regions can be viewed as novel targets for therapeutic strategies by utilizing their unique structural properties.


Subject(s)
Amyloid , alpha-Synuclein/metabolism , Amyloid/chemistry , Amyloid/genetics , Amyloid/metabolism , Amyloid beta-Peptides/chemistry , Protein Aggregates , Protein Conformation, beta-Strand , Humans
12.
bioRxiv ; 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37645819

ABSTRACT

Tau protein blood levels dependent on its distribution to peripheral organs and possible elimination from the body. Thus, the peripheral distribution of CSF-derived tau protein was explored, especially since there is a transition to blood-based biomarkers and the emerging idea that tau pathology may spread beyond brain. Near infrared fluorescence (NIRF) was mainly used to analyze tau (tau-NIRF) distribution after its intracisternal or intravenous injection. There was a striking uptake of blood- or CSF-derived tau-NIRF protein by the skeletal structures, liver, small intestine (duodenum), gall bladder, kidneys, urinary bladder, lymph nodes, heart, and spleen. In aging and in older APP/PS1 mice, tau uptake in regions, such as the brain, liver, and skeleton, was increased. In bone (femur) injected tau protein was associated with integrin-binding sialoprotein (IBSP), a major non-collagenous glycoprotein that is associated with mineralization. Tau-NIRF was cleared slowly from CSF via mainly across the cribriform plate, and cervical lymph nodes. In brain, some of the CSF injected tau protein was associated with NeuN-positive and PDGFRý-positive cells, which may explain its retention. The presence of tau in the bladders suggested excretion routes of tau. CSF anti-tau antibody increased CSF tau clearance, while blood anti-tau antibody decreased tau accumulation in the femur but not in liver, kidney, and spleen. Thus, the data show a body-wide distribution and retention of CSF-derived tau protein, which increased with aging and in older APP/PS1 mice. Further work is needed to elucidate the relevance of tau accumulation in each organ to tauopathy.

13.
Nat Commun ; 14(1): 2367, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37185259

ABSTRACT

Vascular mechanisms of Alzheimer's disease (AD) may constitute a therapeutically addressable biological pathway underlying dementia. We previously demonstrated that soluble pathogenic forms of tau (tau oligomers) accumulate in brain microvasculature of AD and other tauopathies, including prominently in microvascular endothelial cells. Here we show that soluble pathogenic tau accumulates in brain microvascular endothelial cells of P301S(PS19) mice modeling tauopathy and drives AD-like brain microvascular deficits. Microvascular impairments in P301S(PS19) mice were partially negated by selective removal of pathogenic soluble tau aggregates from brain. We found that similar to trans-neuronal transmission of pathogenic forms of tau, soluble tau aggregates are internalized by brain microvascular endothelial cells in a heparin-sensitive manner and induce microtubule destabilization, block endothelial nitric oxide synthase (eNOS) activation, and potently induce endothelial cell senescence that was recapitulated in vivo in microvasculature of P301S(PS19) mice. Our studies suggest that soluble pathogenic tau aggregates mediate AD-like brain microvascular deficits in a mouse model of tauopathy, which may arise from endothelial cell senescence and eNOS dysfunction triggered by internalization of soluble tau aggregates.


Subject(s)
Alzheimer Disease , Tauopathies , Mice , Animals , tau Proteins/genetics , tau Proteins/metabolism , Endothelial Cells/metabolism , Tauopathies/metabolism , Alzheimer Disease/metabolism , Brain/metabolism , Disease Models, Animal , Cellular Senescence , Mice, Transgenic
14.
Eur Heart J ; 44(17): 1560-1570, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37122097

ABSTRACT

BACKGROUND: Amyloid plaques and neurofibrillary tangles, the molecular lesions that characterize Alzheimer's disease (AD) and other forms of dementia, are emerging as determinants of proteinopathies 'beyond the brain'. This study aims to establish tau's putative pathophysiological mechanistic roles and potential future therapeutic targeting of tau in heart failure (HF). METHODS AND RESULTS: A mouse model of tauopathy and human myocardial and brain tissue from patients with HF, AD, and controls was employed in this study. Tau protein expression was examined together with its distribution, and in vitro tau-related pathophysiological mechanisms were identified using a variety of biochemical, imaging, and functional approaches. A novel tau-targeting immunotherapy was tested to explore tau-targeted therapeutic potential in HF. Tau is expressed in normal and diseased human hearts, in contradistinction to the current oft-cited observation that tau is expressed specifically in the brain. Notably, the main cardiac isoform is high-molecular-weight (HMW) tau (also known as big tau), and hyperphosphorylated tau segregates in aggregates in HF and AD hearts. As previously described for amyloid-beta, the tauopathy phenotype in human myocardium is of diastolic dysfunction. Perturbation in the tubulin code, specifically a loss of tyrosinated microtubules, emerged as a potential mechanism of myocardial tauopathy. Monoclonal anti-tau antibody therapy improved myocardial function and clearance of toxic aggregates in mice, supporting tau as a potential target for novel HF immunotherapy. CONCLUSION: The study presents new mechanistic evidence and potential treatment for the brain-heart tauopathy axis in myocardial and brain degenerative diseases and ageing.


Subject(s)
Alzheimer Disease , Tauopathies , Humans , Mice , Animals , tau Proteins/chemistry , tau Proteins/genetics , tau Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Tauopathies/metabolism , Tauopathies/pathology , Microtubules/metabolism , Microtubules/pathology , Myocardium/pathology
15.
Mol Neurobiol ; 60(5): 2691-2705, 2023 May.
Article in English | MEDLINE | ID: mdl-36707462

ABSTRACT

The pathological hallmark of many neurodegenerative diseases is the accumulation of characteristic proteinaceous aggregates. Parkinson's disease and dementia with Lewy bodies can be characterized as synucleinopathies due to the abnormal accumulation of the protein alpha-synuclein (α-Syn). Studies have shown amyloidogenic proteins such as α-Syn and tau can exist as polymorphic aggregates, a theory widely studied mostly in their fibrillar morphology. It is now well understood that an intermediate state of aggregates, oligomers, are the most toxic species. We have shown α-Syn, when modified by different physiological inducers, result in distinct oligomeric conformations of α-Syn. Polymorphic α-Syn oligomers exhibit distinct properties such as aggregate size, conformation, and differentially interact with tau. In this study, we confirm α-Syn oligomeric polymorphs furthermore using in-house novel α-Syn toxic conformation monoclonal antibodies (SynTCs). It is unclear the biological relevance of α-Syn oligomeric polymorphisms. Utilizing a combination of biochemical, biophysical, and cell-based assays, we characterize α-Syn oligomeric polymorphs. We found α-Syn oligomeric polymorphs exhibit distinct immunoreactivity and SynTCs exhibit differential selectivity and binding affinity for α-Syn species. Isothermal titration calorimetry experiments suggest distinct α-Syn:SynTC binding enthalpies in a species-specific manner. Additionally, we found SynTCs differentially reduce α-Syn oligomeric polymorph-mediated neurotoxicity and propagation in primary cortical neurons in a polymorph-specific manner. These studies demonstrate the biological significance of polymorphic α-Syn oligomers along with the importance of polymorph-specific antibodies that target toxic α-Syn aggregates. Monoclonal antibodies that can target the conformational heterogeneity of α-Syn oligomeric species and reduce their mediated toxicity have promising immunotherapeutic potential.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , alpha-Synuclein/metabolism , Parkinson Disease/pathology , Lewy Bodies/metabolism , Neurodegenerative Diseases/metabolism , Antibodies, Monoclonal
16.
Brain Pathol ; 33(1): e13112, 2023 01.
Article in English | MEDLINE | ID: mdl-36054524

ABSTRACT

Accumulation of pathological tau aggregates is a prominent feature in tauopathies that leads during the course of the diseases to neuronal dysfunction before and cell death after. Microglia and astrocytes have been described as playing important roles in synaptic spreading of toxic tau in several neurodegenerative diseases (NDs). Here, we have investigated the immunological and biochemical properties of aggregated tau species in different brain cell types in tau-induced neurodegenerative diseases such as Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and dementia with Lewy bodies (DLB). Additionally, we examined nuclear size, nuclear density, and chromatin compaction in neuronal and glial cells from diseased brain tissues. Microscopic-histological examination was performed using in-house mouse monoclonal antibodies for toxic tau conformers (TTC-M1 and TTC-M2) and tau oligomers (TOMA1-4). By immunohistochemistry and co-immunofluorescence assays using TOMA/TTC-Ms and cell-type specific markers for neurons, astrocytes, and microglia, we observed that TOMA/TTC-Ms were immunoreactive to diverse tau species in different cell types. Analysis of colocalization coefficients indicated an increased pathological tau deposition mainly in the neurons. Western blot analysis of brain homogenates using TOMA/TTC-Ms revealed distinct patterns of tau aggregation in each disease, suggesting that TOMA/TTC-Ms can distinguish between different tau aggregates present in different tauopathies. Additionally, using DAPI staining, we observed that neuronal and astrocytic nuclei had significantly greater nuclear area and increased chromatin compaction in AD cortices compared to non-demented controls. In contrast, reduction in nuclear density/area and more relaxed chromatin was noticed in DLB neurons, astrocytes and microglia and PSP astrocytes and microglia. Cell-type specific tropism of toxic tau species in tauopathies will provide a greater understanding of the involvement of different brain cell types in tau pathology. In this study, we observed that each disease presented cell-type specific nuclear phenotype and tau deposition pattern.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Neurodegenerative Diseases , Supranuclear Palsy, Progressive , Tauopathies , Animals , Mice , Supranuclear Palsy, Progressive/metabolism , Alzheimer Disease/pathology , Microglia/pathology , Astrocytes/pathology , tau Proteins/metabolism , Lewy Body Disease/pathology , Tauopathies/pathology , Neurons/pathology , Neurodegenerative Diseases/pathology , Brain/pathology
17.
J Alzheimers Dis ; 90(3): 1103-1122, 2022.
Article in English | MEDLINE | ID: mdl-36189593

ABSTRACT

BACKGROUND: Tau oligomers are one of the most toxic species, displaying prion-like strains which have different conformations resulting in different tauopathies. Passive immunotherapy targeting different tau species is a promising therapeutic approach. Age is one of the greatest risk factors; however, most immunotherapy studies are done in young to middle-aged mice tauopathy models, which is not representative of the many clinical trials done with older humans with established tauopathies. OBJECTIVE: We utilized two different clones of tau oligomer monoclonal antibodies (TOMAs) in aged Htau and JNPL3 mouse models to investigate the potential of passive immunotherapy. METHODS: Aged mice received a single intravenous injection of 120 µg/animal of either TOMA1, TOMA3 clones or a non-specific IgG. Their cognitive functions were assessed one-week post-injection using Y-maze and novel object recognition tests. Brain tissues were analyzed using biochemical and immunological assays. RESULTS: TOMA 1 and 3 rescues cognitive phenotypes in aged animals in a mouse model-specific manner, indicative by a reduction in tau oligomers levels. The TOMAs were shown to have strong reactivity with different tau oligomeric species in the different mouse models in vitro and ex vivo. CONCLUSION: This is the first study testing tau passive immunotherapy in aged animals and supports our previous reports on of the role of oligomeric tau in disease progression further validating the potential of TOMAs to rescue the late-stage disease pathology and phenotype. Moreover, this study suggests that multiple tau oligomeric strains exist in aged animals; therefore, it is of great importance to further characterize these strains.


Subject(s)
Immunization, Passive , Tauopathies , Animals , Humans , Mice , Antibodies, Monoclonal/genetics , Disease Models, Animal , Mice, Transgenic , Phenotype , tau Proteins/genetics , Tauopathies/pathology , Tauopathies/therapy
18.
Exp Eye Res ; 224: 109240, 2022 11.
Article in English | MEDLINE | ID: mdl-36096190

ABSTRACT

Tauopathies are a family of neurodegenerative diseases which predominately afflict the rapidly growing aging population suffering from various brain disorders including Alzheimer's disease, frontotemporal dementia with parkinsonism-17 and Pick disease. As the only visually accessible region of the central nervous system, in recent years, the retina has attracted extensive attention for its potential as a target for visualizing and quantifying emerging biomarkers of neurodegenerative diseases. Our previous study has found that retinal vascular inflammation and leakage occur at the very early stage of tauopathic mouse model. Here, we aimed to non-invasively visualize age-dependent alterations of retinal vasculature assessing the potential for using changes in retinal vasculature as the biomarker for the early diagnosis of tauopathy. Optical coherence tomography angiography (OCTA), a non-invasive depth-resolved high-resolution imaging technique was used to visualize and quantify tauopathy-induced alterations of retinal vasculature in P301S transgenic mice overexpressing the P301S mutant form of human tau and age-matched wild type littermate mice at 3, 6 and 10 months of age. We observed significant alterations of vascular features in the intermediate capillary plexus (ICP) and deep capillary plexus (DCP) but not in the superficial vascular complex (SVC) of P301S mice at early stages of tauopathy. With aging, alterations of vascular features in P301S mice became more prominent in all three vascular plexuses. Staining of retinal vasculature in flatmounts and trypsin digests of P301S mice at 10 months of age revealed decreased vessel density and increased acellular capillary formation, indicating that vascular degeneration also occurs during tauopathy. Overall, our results demonstrate that the changes in retinal vascular features accelerate during the progression of tauopathy. Vessels in the ICP and DCP may be more susceptible to tauopathy than vessels in the SVC. Since changes in retinal vasculature often precede tau pathology in the brain, non-invasive identification of retinal vascular alterations with OCTA may be a useful biomarker for the early diagnosis of tauopathy and monitoring its progression.


Subject(s)
Tauopathies , Tomography, Optical Coherence , Animals , Humans , Mice , Angiography , Biomarkers , Disease Models, Animal , Fluorescein Angiography/methods , Mice, Transgenic , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology , Tauopathies/diagnostic imaging , Tauopathies/pathology , Tomography, Optical Coherence/methods
19.
J Biol Chem ; 298(11): 102498, 2022 11.
Article in English | MEDLINE | ID: mdl-36116552

ABSTRACT

Amyloid aggregates of specific proteins constitute important pathological hallmarks in many neurodegenerative diseases, defining neuronal degeneration and disease onset. Recently, increasing numbers of patients show comorbidities and overlaps between multiple neurodegenerative diseases, presenting distinct phenotypes. Such overlaps are often accompanied by colocalizations of more than one amyloid protein, prompting the question of whether direct interactions between different amyloid proteins could generate heterotypic amyloids. To answer this question, we investigated the effect of α-synuclein (αS) on the DNA-binding protein TDP-43 aggregation inspired by their coexistence in pathologies such as Lewy body dementia and limbic predominant age-related TDP-43 encephalopathy. We previously showed αS and prion-like C-terminal domain (PrLD) of TDP-43 synergistically interact to generate toxic heterotypic aggregates. Here, we extend these studies to investigate whether αS induces structurally and functionally distinct polymorphs of PrLD aggregates. Using αS-PrLD heterotypic aggregates generated in two different stoichiometric proportions, we show αS can affect PrLD fibril forms. PrLD fibrils show distinctive residue level signatures determined by solid state NMR, dye-binding capability, proteinase K (PK) stability, and thermal stability toward SDS denaturation. Furthremore, by gold nanoparticle labeling and transmission electron microscopy, we show the presence of both αS and PrLD proteins within the same fibrils, confirming the existence of heterotypic amyloid fibrils. We also observe αS and PrLD colocalize in the cytosol of neuroblastoma cells and show that the heterotypic PrLD fibrils selectively induce synaptic dysfunction in primary neurons. These findings establish the existence of heterotypic amyloid and provide a molecular basis for the observed overlap between synucleinopathies and TDP-43 proteinopathies.


Subject(s)
Metal Nanoparticles , Neurodegenerative Diseases , Neurotoxicity Syndromes , Humans , alpha-Synuclein/metabolism , Gold , Amyloid/chemistry , Neurodegenerative Diseases/metabolism , DNA-Binding Proteins/genetics
20.
Biochemistry ; 61(17): 1766-1773, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36001818

ABSTRACT

Accumulation of filamentous aggregates of α-synuclein is a pathological hallmark of several neurodegenerative diseases, including Parkinson's disease (PD). The interaction between α-synuclein and phospholipids has been shown to play a critical role in the aggregation of α-synuclein. Most structural studies have, however, been focused on α-synuclein filaments formed in the absence of lipids. Here, we report the structural investigation of α-synuclein filaments assembled under the quiescent condition in the presence of anionic lipid vesicles using electron microscopy (EM), including cryogenic electron microscopy (cryo-EM). Our transmission electron microscopy (TEM) analyses reveal that α-synuclein forms curly protofilaments at an early stage of aggregation. The flexible protofilaments were then converted to long filaments after a longer incubation of 30 days. More detailed structural analyses using cryo-EM reveal that the long filaments adopt untwisted structures with different diameters, which have not been observed in previous α-synuclein fibrils formed in vitro. The untwisted filaments are rather similar to straight filaments with no observable twist that are extracted from patients with dementia with Lewy bodies. Our structural studies highlight the conformational diversity of α-synuclein filaments, requiring additional structural investigation of not only more ex vivo α-synuclein filaments but also in vitro α-synuclein filaments formed in the presence of diverse cofactors to better understand the molecular basis of diverse molecular conformations of α-synuclein filaments.


Subject(s)
Parkinson Disease , alpha-Synuclein , Cryoelectron Microscopy , Humans , Lewy Bodies , Parkinson Disease/pathology , Phospholipids , alpha-Synuclein/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...