Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Ecol ; 90(7): 1727-1741, 2021 07.
Article in English | MEDLINE | ID: mdl-33792923

ABSTRACT

Changes in biophysical conditions through time generate spatial and temporal variability in habitat quality across landscapes. For river ecosystems, researchers are increasingly able to characterize spatial and temporal patterns in habitat conditions, referred to as shifting habitat mosaics, yet rarely demonstrate how this translates into corresponding biological processes such as organism growth and production. We assessed spatial patterns and processes determining seasonal changes in juvenile Chinook Salmon Oncorhynchus tshawytscha size, growth and production over 30-40 km in two NE Oregon subbasins. We quantified seasonal patterns of growth by combining estimated emergence dates and body size distributions in July and September. We then used analysis of bioenergetics, empirical fish diets and spatial models incorporating temperature, habitat and population density to evaluate mechanisms driving spatiotemporal patterns of growth. Lastly, we quantified seasonal contributions to individual fish growth and to total production as a function of position within the stream network. Spatial heterogeneity in incubation temperatures corresponded to later estimated emergence timing with distance upstream in both subbasins. During spring, estimated growth rates decreased with distance upstream, and coupled with emergence patterns, resulted in pronounced longitudinal gradients in body size by July. During summer, spatial patterns of growth reversed, with greater diet ration sizes and growth efficiencies upstream than downstream. These opposing spatiotemporal patterns of emergence timing and seasonal growth rates produced longitudinal gradients in the proportion of fish growth achieved in spring versus summer, with up to 80% of an individual's growth occurring in spring at downstream sites but as low as 10% at upstream sites. Coupling longitudinal patterns of fish density and growth revealed that in one subbasin the majority (65%) of total production occurred in spring, while in the other, in which fish were concentrated in headwaters, the majority (60%) of production occurred in summer. While recent work has emphasized inter-annual shifts in fish production across large spatial scales, this study demonstrates that longitudinal gradients of fish growth and production can reverse across seasons, and reveals important contributions of warmer, downstream habitats to overall production that occurred during cooler times of the year.


Subject(s)
Ecosystem , Rivers , Animals , Oregon , Seasons , Temperature
2.
Trends Ecol Evol ; 31(11): 842-849, 2016 11.
Article in English | MEDLINE | ID: mdl-27663836

ABSTRACT

Few concepts in ecology have been so influential as that of the trophic cascade. Since the 1980s, the term has been a central or major theme of more than 2000 scientific articles. Despite this importance and widespread usage, basic questions remain about what constitutes a trophic cascade. Inconsistent usage of language impedes scientific progress and the utility of scientific concepts in management and conservation. Herein, we offer a definition of trophic cascade that is designed to be both widely applicable yet explicit enough to exclude extraneous interactions. We discuss our proposed definition and its implications, and define important related terms, thereby providing a common language for scientists, policy makers, conservationists, and other stakeholders with an interest in trophic cascades.


Subject(s)
Ecology , Food Chain , Terminology as Topic
3.
Mar Pollut Bull ; 62(8): 1708-13, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21700298

ABSTRACT

We investigated the physical properties of beaches contaminated with plastic fragments. We compared sediment cores from Hawai'i Island's Kamilo Beach, notable for plastic accumulation, to cores from a nearby beach. Compared to the nearby beach, Kamilo sediments contained more plastics (up to 30.2% by weight), were coarser-grained, and were more permeable (t-test, p<0.0001). 85% of the fragments were polyethylene, and 95% were concentrated in the top 15 cm of the cores. We constructed artificial cores of standardized grain size and varying plastic-to-sediment ratios. Adding plastic significantly increased the permeability (ANOVA, p=0.002), which was partially attributed to the fragments increasing the mean grain size. Sediments with plastic warmed more slowly (16% maximum decrease in thermal diffusivity), and reached lower maximum temperatures (21% maximum increase in heat capacity). These changes have a variety of potential effects on beach organisms, including those with temperature-dependent sex-determination such as sea turtle eggs.


Subject(s)
Bathing Beaches , Environmental Monitoring , Environmental Pollutants/analysis , Geologic Sediments/analysis , Plastics/analysis , Hawaii , Hot Temperature , Oceans and Seas , Particle Size , Permeability , Porosity , Waste Products/analysis , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...