Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702916

ABSTRACT

BACKGROUND: The present study aimed to determine how various amounts (0.00, 0.58, 1.52 and 4.50 g 100 g-1) of wine lees (WL), which contains numerous essential components, impact the emulsifying properties of fish gelatin (FG) at a low concentration (0.5 g 100 g-1) in the high-fat phase (65 g 100 g-1). This study conducted rheology, physicochemical technical and characterization analyses on the emulsions to provide sustainable and innovative approaches for spreadable oils. RESULTS: The addition of WL to FG emulsions improved oxidative stability, emulsion stability and bioactive compounds. The zeta potential (-101 ± 5.62 mV) of 0.58 g 100 g-1 WL-containing emulsion (PE1) was found to be high, whereas particle size (347.6 ± 5.25 nm) and polydispersity index (0.50) were statistically low. It was also found that the addition of WL improved the intermolecular interactions, crystallinity and microstructural properties of the emulsions. All these results were supported by simulating the molecular configuration between FG and WL. The compounds gallic acid, caffeic acid, myricetin, quercetin and resveratrol showed a strong affinity to FG, with free binding energies of -5.50, -5.88, -6.53, -6.68 and -6.66 kcal mol-1, respectively. CONCLUSION: As a result, WL-supported FG has the potential to be used as an alternative to egg proteins to develop sustainable low-cost spreadable emulsions. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Int J Biol Macromol ; 259(Pt 2): 129342, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38216009

ABSTRACT

The current study investigated the potential of utilizing wine lees extract (WLE) from red wine to enhance the sustainability and cost-effectiveness of xanthan gum (XG). A novel hydrogel system was successfully generated by cross-linking WLE and XG. Response surface methodology (RSM) was used to thoroughly analyze the characteristics of this novel hydrogel to understand its behavior and possible applications. Consistency index (K), flow behavior index (n), water holding capacity (%), and oil binding capacity (%) of the cross-linked hydrogels were optimized, and the best formulation was determined to be 0.81 % XG + 0.67 % WLE and crosslink temperature of 47 °C. The addition of WLE (0-1 % w/v) to different concentrations of XG (0-1 % w/v) was found to have a notable impact on the rheological properties, but changes in cross-link temperature (45-65 °C) did not have a significant effect. The activation energy was increased by incorporating WLE at XG concentration above 0.5 %, indicating a more robust and stable structure. FTIR and SEM analyses confirmed the chemical bonding structure of the optimum hydrogel. Incorporating WLE could significantly improve the functional properties of XG hydrogels, allowing the development of healthier product formulations.


Subject(s)
Hydrogels , Wine , Hydrogels/chemistry , Polysaccharides, Bacterial/chemistry , Temperature , Rheology
3.
J Sci Food Agric ; 104(3): 1357-1366, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37776325

ABSTRACT

BACKGROUND: The purpose of this study was to evaluate the potential of incorporating wine lees (WL), an inexpensive and widely available high-value winery waste product, into gelatin-based jellies to improve their technological and functional properties. We also aimed to evaluate the suitability of WL as a jelly colorant by comparing it with a commercial colorant. RESULTS: Wine lees were characterized for their anthocyanin, phenolic, antioxidant, and mineral content. Subsequently, physicochemical, functional, textural, rheological, and thermal analyses were conducted on soft candies containing 21, 14, and 7 g kg-1 WL (labeled as WL30, WL20, and WL10, respectively). The total phenolic, anthocyanin, antioxidant, and cupric-reducing antioxidant capacity (CUPRAC) values of WL30 were determined as 57.80 ± 6.12 mg gallic acid equivalent per kilogram (GAE kg-1 ), 17.58 ± 0.36 mg malvidin-3-glucoside equivalent kg-1 , 0.04 ± 0.01 µg mL-1 , and 45.55 ± 1.00 mmol L-1 Trolox equivalent (TE), respectively. The control sample had the best rheological characteristics, including K', G', and n*, as well as the greatest hardness value, followed by WL30. However, during the storage period, WL30 exhibited superior color stability and retained higher levels of phenolic and anthocyanin components in comparison with the control sample. CONCLUSION: Wine lees have the potential to be utilized as a natural colorant and alternative flavoring agent in jelly production. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Wine , Wine/analysis , Antioxidants/chemistry , Anthocyanins/analysis , Food , Phenols/analysis
4.
Int J Biol Macromol ; 258(Pt 1): 128854, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38123042

ABSTRACT

The study aimed to use response surface methodology (RSM) to create and understand a novel edible film made from fish gelatin (FG). This film includes wine lees (WL) and carrageenan (CAR). The concentrations of WL (0, 1, 2, and 3 %) and CAR (0, 1, and 3 %) were considered independent variables. The process variable combinations for the optimal response functions were 1.926 % WL and 3 % CAR, forming soft and rigid films with low tensile strength (TS) and high elongation at break (EAB%). Based on the evaluation of each response, FG film had the highest TS value, FG/CAR(3 %) film had the maximum EAB, and FG/WL (3 %)/CAR (3 %) film had the lowest vapor permeability (WVP) and the highest opacity (OP). The incorporation of WL considerably improved the functional properties of these films, enabling strong antioxidant activity and high phenolic content. Characterization of the films with analytical techniques: Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis demonstrated a considerable interaction between WL and FG, indicating a high level of compatibility between the two substances. Our data suggest that the formulation of edible films can be adjusted to fit the specific requirements of the design.


Subject(s)
Edible Films , Wine , Animals , Gelatin/chemistry , Carrageenan/chemistry , Tensile Strength , Permeability , Fishes
5.
J Sci Food Agric ; 103(10): 5138-5144, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-36988948

ABSTRACT

BACKGROUND: Tomato seed oil (TSO) was obtained using a combined method of pre-keeping in solvent and Soxhlet extraction. A considerable oil yield could not be obtained using samples without drying or grinding, with dried or non-dried seeds, which were not kept in solvent (<2%). For this purpose, oil yield, physicochemical properties, oxidation values, spectrophotometric indices and fatty acid composition of the samples extracted with acetone, ethyl acetate, chloroform and petroleum ether were determined. RESULTS: Oils obtained by the extraction of petroleum ether (20.36 meq g O2 kg-1 ) and ethyl acetate (11.16 meq g O2 kg-1 ) were found to have very high peroxide values. Besides, a high-quality edible oil should have an anisidine value (p-AnV) of less than 10. Samples extracted with chloroform alone had a p-AnV of 8.86, while slightly higher values were found for other samples (P < 0.05). Chloroform (20.50) and acetone (23.06) both gave the best results and met the expected value, with total oxidation value below 30. Finally, the highest levels of primary fatty acids observed were linoleic acid (32.77-41.95%), palmitic acid (23.75-32.27%), oleic acid (16.17-24.52%), and stearic acid (7.76-12.82%). CONCLUSION: This process is applicable to recycling tomato sauce waste and essential oil. The research proved that the seed-drying process and pre-keeping in solvent have an important effect on oil yield, quality and fatty acid composition. © 2023 Society of Chemical Industry.


Subject(s)
Solanum lycopersicum , Solvents/chemistry , Acetone/analysis , Chloroform/analysis , Fatty Acids/chemistry , Seeds/chemistry , Plant Oils/analysis
6.
Int J Biol Macromol ; 220: 627-637, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35995178

ABSTRACT

Anthocyanins were extracted from a winery solid by-product (Vinasse) and added to fish gelatin (FG) and polyvinyl alcohol (PVA) matrices to create freshness monitoring labels. Three different colorimetric indicator smart films [PWE = polyvinyl alcohol with wine extract (WE), FWE = fish gelatin with WE, and PFWE = polyvinyl alcohol and FG blended film with WE] were generated and examined for their suitability to monitor the freshness of shrimp. The mechanical and optical properties, ammonia sensitivity, and colorimetric analysis of smart films were determined. Fourier transform-infrared spectroscopy (FTIR) was used to evaluate the interaction of anthocyanins with FG and PVA and changes in the film's chemical composition with storage. The film surfaces were characterized with atomic force microscopy (AFM). The incorporation of WE enhanced the films' flexibility by providing plasticizer and surfactant properties. The PWE film showed the best color stability. The FWE film showed the least amount of total color change with exposure to ammonia gas and was deemed suitable for refrigerated food packaging. The color of all indicator films showed significant changes suggesting that PWE, FWE, and PFWE films can be utilized in the intelligent packaging application for protein-rich foods to detect spoilage.


Subject(s)
Anthocyanins , Polyvinyl Alcohol , Ammonia , Animals , Anthocyanins/chemistry , Colorimetry , Fishes , Food Packaging/methods , Gelatin/chemistry , Hydrogen-Ion Concentration , Plant Extracts/chemistry , Plasticizers , Polyvinyl Alcohol/chemistry , Surface-Active Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...