Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Scientifica (Cairo) ; 2024: 2025557, 2024.
Article in English | MEDLINE | ID: mdl-38449801

ABSTRACT

Background: Candidiasis is the common name for diseases caused by yeast of the genus Candida. Candida albicans is one of the most implicated species in superficial and invasive candidiasis. Antifungals, polyenes, and azoles have been used to treat candidiasis. However, due to the development of antifungal resistance, research of natural substances with potential antifungal effects at low concentrations or combined is also a possibility. Methods: The broth microdilution method was used to evaluate the antifungal activity. The biofilm formation was assessed using the microtiter plate method. The antibiofilm activities were assessed using micro plaque tetrazolium salt assay (MTT). The combination effect of antifungal with natural substances was made using the checkerboard method. Results: Among our isolates, clotrimazole was the most resistant, but amphotericin B was the most effective antifungal. The biofilm was formed by all isolates of C. albicans. Curcumin and piperine displayed antibiofilm activity with minimum biofilm inhibitory concentration (MBIC) and minimum eradicating concentration (MBEC) ranging from 64 to 1024 µg/mL and 256 to 2048 µg/mL. In combination, piperine presented double synergistic effects compared to curcumin with all antifungals tested. Curcumin shows more synergistic effect when combined with polyenes than with azoles. However, piperine shows a more synergistic effect when combined with azoles compared to polyenes. Conclusion: C. albicans was susceptible to curcumin and piperine both on planktonic cells and biofilm. The combination of curcumin and piperine with antifungals has shown synergistic effects against multiresistant clinical isolates of Candida albicans representing an alternative drug research for the treatment of clinical candidiasis.

2.
Biomarkers ; 28(2): 206-216, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36480283

ABSTRACT

PurposeThe persistent and alarming rates of increase in cardiovascular and renal diseases caused by chemicals such as cobalt chloride (CoCl2) in mammalian tissues have led to the use of various drugs for the treatment of these diseases. This study aims at evaluating the nephron-protective action of Naringin (NAR), a metal-chelating antioxidant against CoCl2-induced hypertension and nephrotoxicity.MethodsForty-two male Wistar rats were randomly distributed to seven rats of six groups and classified into Group A (Control), Group B (300 part per million; ppm CoCl2), Group C (300 ppm CoCl2 + 80 mg/kg NAR), Group D (300 ppm CoCl2 + 160 mg/kg NAR), Group E (80 mg/kg NAR), and Group F (160 mg/kg NAR). NAR and CoCl2 were administered via oral gavage for seven days. Biomarkers of renal damage, oxidative stress, antioxidant status, blood pressure parameters, immunohistochemistry of renal angiotensin-converting enzyme and podocin were determined.ResultsCobalt chloride intoxication precipitated hypertension, renal damage, and oxidative stress. Immunohistochemistry revealed higher expression of angiotensin-converting enzyme (ACE) and podocin in rats administered only CoCl2.ConclusionTaken together, the antioxidant and metal-chelating action of Naringin administration against cobalt chloride-induced renal damage and hypertension could be through abrogation of angiotensin-converting enzyme and podocin signalling pathway.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Hypertension , Rats , Male , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Rats, Wistar , Cobalt/toxicity , Hypertension/chemically induced , Hypertension/drug therapy , Angiotensins/adverse effects , Mammals/metabolism
3.
Environ Sci Pollut Res Int ; 30(9): 23263-23275, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36319925

ABSTRACT

Sodium fluoride (NaF) is one of the neglected environmental toxicants that has continued to silently cause toxicity to both humans and animals. NaF is universally present in water, soil, and atmosphere. The persistent and alarming rate of increase in cardiovascular and renal diseases caused by chemicals such as NaF in mammalian tissues has led to the use of various drugs for the treatment of these diseases. The present study aimed at evaluating the renoprotective and antihypertensive effects of L-arginine against NaF-induced nephrotoxicity. Thirty male Wistar rats (150-180 g) were used in this study. The rats were randomly divided into five groups of six rats each as follows: Control, NaF (300 ppm), NaF + L-arginine (100 mg/kg), NaF + L-arginine (200 mg/kg), and NaF + lisinopril (10 mg/kg). Histopathological examination and immunohistochemistry of renal angiotensin-converting enzyme (ACE) and mineralocorticoid receptor (MCR) were performed. Markers of renal damage, oxidative stress, antioxidant defense system, and blood pressure parameters were determined. L-arginine and lisinopril significantly (P < 0.05) ameliorated the hypertensive effects of NaF. The systolic, diastolic, and mean arterial blood pressure of the treated groups were significantly (P < 0.05) reduced compared with the hypertensive group. This finding was concurrent with significantly increased serum bioavailability of nitric oxide in the hypertensive rats treated with L-arginine and lisinopril. Also, there was a significant reduction in the level of blood urea nitrogen and creatinine of hypertensive rats treated with L-arginine and lisinopril. There was a significant (P < 0.05) reduction in markers of oxidative stress such as malondialdehyde and protein carbonyl and concurrent increase in the levels of antioxidant enzymes in the kidney of hypertensive rats treated with L-arginine and lisinopril. The results of this study suggest that L-arginine and lisinopril normalized blood pressure, reduced oxidative stress, and the expression of renal ACE and mineralocorticoid receptor, and improved nitric oxide production. Thus, L-arginine holds promise as a potential therapy against hypertension and renal damage.


Subject(s)
Hypertension , Lisinopril , Humans , Rats , Male , Animals , Lisinopril/metabolism , Lisinopril/pharmacology , Lisinopril/therapeutic use , Sodium Fluoride/toxicity , Antioxidants/metabolism , Nitric Oxide/metabolism , Receptors, Mineralocorticoid/metabolism , Receptors, Mineralocorticoid/therapeutic use , Rats, Wistar , Hypertension/chemically induced , Kidney , Blood Pressure , Oxidative Stress , Arginine/metabolism , Arginine/pharmacology , Arginine/therapeutic use , Dietary Supplements , Angiotensins/metabolism , Angiotensins/pharmacology , Angiotensins/therapeutic use , Mammals
4.
Adv Pharmacol Pharm Sci ; 2022: 6626834, 2022.
Article in English | MEDLINE | ID: mdl-35464619

ABSTRACT

Eriobotrya japonica (loquat) has been used in African traditional medicine with numerous beneficial health effects. The extracts from loquat contain several bioactive compounds with a plethora of pharmacological properties. However, a scientific study on the activity against the aetiological agent of cryptococcosis has not yet been reported. Therefore, this study aimed to investigate the antifungal potential of various extracts from Eriobotrya japonica against clinical isolates of Cryptococcus neoformans. Quantitative and qualitative phytochemical analyses of extracts were made by following standard procedures. The broth microdilution method and the checkerboard methods were used to determine the antifungal activity and the combination of extracts with antifungals drugs. The methanol extract of seeds and the hexane extract of leaves exhibited the best significant antifungal activity with MIC values of 32 µg/mL. Furthermore, the combination of both extracts with nystatin and clotrimazole showed synergistic interactions with a 32-fold reduction in the MIC values of nystatin. Our findings indicate that Eriobotrya japonica extracts are a potential source of new antifungals that could be developed for use in the treatment of cryptococcosis. The anticryptococcal and antifungal activities potentiating activity of the studied extracts indicate their potential in the management of cryptococcosis. Further study should be considered to identify the bioactive principles against Cryptococcus neoformans.

5.
Biol Trace Elem Res ; 200(3): 1220-1236, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33893992

ABSTRACT

Sodium fluoride (NaF) is one of the neglected environmental pollutants. It is ubiquitously found in the soil, water, and environment. Interestingly, fluoride has been extensively utilized for prevention of dental caries and tartar formation, and may be added to mouthwash, mouth rinse, and toothpastes. This study is aimed at mitigating fluoride-induced hypertension and nephrotoxicity with clofibrate, a peroxisome proliferator-activated receptor-alpha (PPARα) agonist. For this study, forty male Wistar rats were used and randomly grouped into ten rats per group, control, sodium fluoride (NaF; 300 ppm) only, NaF plus clofibrate (250 mg/kg) and NaF plus lisinopril (10 mg/kg), respectively, for 7 days. The administration of NaF was by drinking water ad libitum, while clofibrate and lisinopril were administered by oral gavage. Administration of NaF induced hypertension, and was accompanied with exaggerated oxidative stress; depletion of antioxidant defence system; reduced nitric oxide production; increased systolic, diastolic and mean arterial pressure; activation of angiotensin-converting enzyme activity and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB); and testicular apoptosis. Treatment of rats with clofibrate reduced oxidative stress, improved antioxidant status, lowered high blood pressure through the inhibition of angiotensin-converting enzyme activity, mineralocorticoid receptor over-activation, and abrogated testicular apoptosis. Taken together, clofibrate could offer exceptional therapeutic benefit in mitigating toxicity associated with sodium fluoride.


Subject(s)
Clofibrate , Dental Caries , Animals , Clofibrate/toxicity , Male , Oxidative Stress , PPAR alpha/metabolism , Rats , Rats, Wistar , Sodium Fluoride/toxicity
6.
Pak J Pharm Sci ; 35(6): 1581-1694, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36789818

ABSTRACT

Launaea taraxacifolia has been traditionally used for the management of conditions such as cardiovascular, respiratory, and metabolic diseases. High blood pressure was established by oral administration of L-Nitro Arginine Methyl Ester (L-NAME) a non-selective inhibitor of endothelial nitric oxide synthase (eNOS). The antihypertensive action of the methanol leaf extract of L. taraxacifolia was examined. Fifty male Wistar rats were divided into 5 groups of 10 animals per group: Group A (Distilled water), Group B (Hypertensive rats; 40mg/kg L-NAME), Group C (Hypertensive rats plus 100mg/kg extract), Group D (Hypertensive rats plus 200 mg/kg extract) and Group E (Hypertensive rats plus 10mg/kg of Lisinopril). The treatments were orally administered for five weeks. Haemodynamic parameters, urinalysis, indices of oxidative stress and immunohistochemistry were determined. Findings from this study showed that blood pressure parameters, urinary sodium and indices of oxidative stress increased significantly while In-vivo antioxidant defence systems decreased significantly in hypertensive rats. Immunohistochemistry revealed significant increases in expressions of mineralocorticoid receptor, angiotensin converting enzyme activity and kidney injury molecule-1 in kidney of hypertensive rats. Treatment with Launeae taraxacifolia normalized blood pressure parameters, urinary sodium, oxidative stress indices, antioxidant defence system, and serum nitric oxide bioavailability.


Subject(s)
Antihypertensive Agents , Asteraceae , Hypertension , Plant Extracts , Animals , Male , Rats , Antihypertensive Agents/pharmacology , Antioxidants/pharmacology , Blood Pressure , Hypertension/drug therapy , Hypertension/metabolism , NG-Nitroarginine Methyl Ester , Nitric Oxide/metabolism , Oxidative Stress , Rats, Wistar , Sodium , Plant Extracts/pharmacology
7.
Vet World ; 14(10): 2705-2713, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34903929

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of coronavirus disease 2019 (COVID-19). This virus has become a global pandemic with unprecedented mortality and morbidity along with attendant financial and economic crises. Furthermore, COVID-19 can easily be transmitted regardless of religion, race, sex, or status. Globally, high hospitalization rates of COVID-19 patients have been reported, and billions of dollars have been spent to contain the pandemic. Angiotensin-converting enzyme (ACE) 2 is a receptor of SARS-CoV-2, which has a significant role in the entry of the virus into the host cell. ACE2 is highly expressed in the type II alveolar cells of the lungs, upper esophagus, stratified epithelial cells, and other tissues in the body. The diminished expressions of ACE2 have been associated with hypertension, arteriosclerosis, heart failure, chronic kidney disease, and immune system dysregulation. Overall, the potential drug candidates that could serve as ACE2 activators or enhance the expression of ACE2 in a disease state, such as COVID-19, hold considerable promise in mitigating the COVID-19 pandemic. This study reviews the therapeutic potential and pharmacological benefits of the novel ACE2 in the management of COVID-19 using search engines, such as Google, Scopus, PubMed, and PubMed Central.

8.
J Food Biochem ; 45(2): e13604, 2021 02.
Article in English | MEDLINE | ID: mdl-33458853

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent for the Coronavirus Disease 2019 (COVID-19). The COVID-19 pandemic has created unimaginable and unprecedented global health crisis. Since the outbreak of COVID-19, millions of dollars have been spent, hospitalization overstretched with increasing morbidity and mortality. All these have resulted in unprecedented global economic catastrophe. Several drugs and vaccines are currently being evaluated, tested, and administered in the frantic efforts to stem the dire consequences of COVID-19 with varying degrees of successes. Zinc possesses potential health benefits against COVID-19 pandemic by improving immune response, minimizing infection and inflammation, preventing lung injury, inhibiting viral replication through the interference of the viral genome transcription, protein translation, attachment, and host infectivity. However, this review focuses on the various mechanisms of action of zinc and its supplementation as adjuvant for vaccines an effective therapeutic regimen in the management of the ravaging COVID-19 pandemic. PRACTICAL APPLICATIONS: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent for the Coronavirus Disease 2019 (COVID-19), has brought unprecedented untold hardship to both developing and developed countries. The global race for vaccine development against COVID-19 continues with success in sight with attendant increasing hospitalization, morbidity, and mortality. Available drugs with anti-inflammatory actions have become alternative to stem the tide of COVID-19 with attendant global financial crises. However, Zinc is known to modulate several physiological functions including intracellular signaling, enzyme function, gustation, and olfaction, as well as reproductive, skeletal, neuronal, and cardiovascular systems. Hence, achieving a significant therapeutic approach against COVID-19 could imply the use of zinc as a supplement together with available drugs and vaccines waiting for emergency authorization to win the battle of COVID-19. Together, it becomes innovative and creative to supplement zinc with currently available drugs and vaccines.


Subject(s)
COVID-19 Drug Treatment , Dietary Supplements , Pandemics , Zinc/administration & dosage , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Antiviral Agents/pharmacology , COVID-19/virology , Cytokine Release Syndrome/prevention & control , Genome, Viral , Humans , Immune System/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Zinc/pharmacology
9.
J Food Biochem ; 44(12): e13534, 2020 12.
Article in English | MEDLINE | ID: mdl-33089540

ABSTRACT

Hypertension is the most common cardiovascular disease that affects approximately 26% of adult population, worldwide. Rutin is one of the important flavonoids that is consumed in the daily diet, and found in many food items, vegetables, and beverages. Uninephrectomy (UNX) of the left kidney was performed, followed by induction of hypertension. The rats were randomly divided into four groups of 10 rats: group 1-Sham-operated rats; group 2-UNX rats, group 3-UNX-L-NAME (40 mg/kg) plus rutin (100 mg/kg bwt), and groups 4-UNX-L-NAME plus lisinopril (10 mg/kg bwt), orally for 3 weeks. Results revealed significant heightening of arterial pressure and oxidative stress indices, while hypertensive rats treated with rutin had lower expressions of angiotensin converting enzyme (ACE) and mineralocorticoid receptor in uninephrectomized rats. Together, rutin as a novel antihypertensive flavonoid could provide an unimaginable benefits for the management of hypertension through inhibition of angiotensin converting enzyme and mineralocorticoid receptor. PRACTICAL APPLICATIONS: Hypertension has been reported to be the most common cardiovascular disease, affecting approximately 26% of the adult population worldwide with predicted prevalence to increase by 60% by 2025. Recent advances in phytomedicine have shown flavonoids to be very helpful in the treatment of many diseases. Flavonoids have been used in the treatment and management of cardiovascular diseases, obesity and hypertension. The study revealed that rutin, a known flavonoid inhibited angiotensin converting enzyme (ACE), angiotensin 2 type 1 receptor (ATR1), and mineralocorticoid receptor (MCR), comparable to the classic ACE inhibitor, Lisinopril, indicating the novel antihypertensive property of rutin. Therefore, flavonoids such as rutin found in fruits and vegetables could, therefore, serve as an antihypertensive drug regimen. Combining all, functional foods rich in flavonoids could be used as potential therapeutic candidates for managing uninephrectomized hypertensive patients.


Subject(s)
Antihypertensive Agents , Hypertension , Angiotensin II , Animals , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Humans , Hypertension/drug therapy , Peptidyl-Dipeptidase A , Rats , Receptors, Mineralocorticoid , Rutin/pharmacology , Rutin/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...