Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Mol Biol ; 42(1 suppl 1): 178-185, 2019.
Article in English | MEDLINE | ID: mdl-30985856

ABSTRACT

Organic acidurias and aminoacidopathies are groups of frequent inborn errors of metabolism (IEMs), which are caused by mutations in specific genes that lead to loss of protein/enzyme or transport function with important deleterious effects to cell metabolism. Since a considerable number of such disorders are potentially treatable when diagnosed at an early stage of life, diagnosis is crucial for the patients. In the present report, we describe symptomatic individuals referred to our service that were diagnosed with these disorders from 2006 to 2016. We used blood and urine samples from 21,800 patients suspected of aminoacidopathies or organic acidemias that were processed by the analytical techniques reverse phase high-performance liquid chromatography for amino acid quantification and gas chromatography coupled to mass spectrometry for organic acid detection. Analysis of dried blood spots by liquid chromatography-tandem mass spectrometry was used in some cases. We detected 258 cases of organic acidurias, and 117 patients with aminoacidopathies were diagnosed. Once diagnosis was performed, patients were promptly submitted to the available treatments with clear reduction of mortality and morbidity. The obtained data may help pediatricians and metabolic geneticists to become aware of these diseases and possibly expand newborn screening programs in the future.

2.
J Cell Biochem ; 119(12): 10021-10032, 2018 12.
Article in English | MEDLINE | ID: mdl-30129250

ABSTRACT

The deficiency of the enzyme glutaryl-CoA dehydrogenase, known as glutaric acidemia type I (GA-I), leads to the accumulation of glutaric acid (GA) and glutarilcarnitine (C5DC) in the tissues and body fluids, unleashing important neurotoxic effects. l-carnitine (l-car) is recommended for the treatment of GA-I, aiming to induce the excretion of toxic metabolites. l-car has also demonstrated an important role as antioxidant and anti-inflammatory in some neurometabolic diseases. This study evaluated GA-I patients at diagnosis moment and treated the oxidative damage to lipids, proteins, and the inflammatory profile, as well as in vivo and in vitro DNA damage, reactive nitrogen species (RNS), and antioxidant capacity, verifying if the actual treatment with l-car (100 mg kg-1 day-1 ) is able to protect the organism against these processes. Significant increases of GA and C5DC were observed in GA-I patients. A deficiency of carnitine in patients before the supplementation was found. GA-I patients presented significantly increased levels of isoprostanes, di-tyrosine, urinary oxidized guanine species, and the RNS, as well as a reduced antioxidant capacity. The l-car supplementation induced beneficial effects reducing these biomarkers levels and increasing the antioxidant capacity. GA, in three different concentrations, significantly induced DNA damage in vitro, and the l-car was able to prevent this damage. Significant increases of pro-inflammatory cytokines IL-6, IL-8, GM-CSF, and TNF-α were shown in patients. Thus, the beneficial effects of l-car presented in the treatment of GA-I are due not only by increasing the excretion of accumulated toxic metabolites, but also by preventing oxidative damage.


Subject(s)
Amino Acid Metabolism, Inborn Errors/metabolism , Brain Diseases, Metabolic/metabolism , Carnitine/pharmacology , DNA Damage , Glutaryl-CoA Dehydrogenase/deficiency , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/therapeutic use , Carnitine/therapeutic use , Child , Child, Preschool , Female , Glutaryl-CoA Dehydrogenase/drug effects , Glutaryl-CoA Dehydrogenase/metabolism , Humans , Infant , Male , Protective Agents/pharmacology , Protective Agents/therapeutic use , Reactive Nitrogen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...