Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 92(12): 123105, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34972394

ABSTRACT

A novel double full-cylinder crystal x-ray spectrometer for x-ray emission spectroscopy (XES) has been realized based on a modified von Hamos geometry. The spectrometer is characterized by its compact dimensions, its versatility with respect to the number of crystals used in series in the detection path, and the option to perform calibrated XES measurements. The full-cylinder crystals used are based on highly annealed pyrolytic graphite with a thickness of 40 µm, which was bent to a radius of curvature of 50 mm. The flexible design of the spectrometer allows for an easy change-within the same setup-between measurements with one crystal for maximized efficiency or two crystals for increased spectral resolving power. The spectrometer realized can be used at different end-stations of synchrotron radiation beamlines or can be laboratory-based. The main application focus of the spectrometer is the determination of x-ray fundamental atomic parameters in the photon energy range from 2.4 to 18 keV. The evaluation of chemical speciation is also an area of application, as demonstrated in the example of battery electrodes using resonant inelastic x-ray scattering.

2.
Struct Dyn ; 6(2): 024901, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31041363

ABSTRACT

"Probe-before-destroy" methodology permitted diffraction and imaging measurements of intact specimens using ultrabright but highly destructive X-ray free-electron laser (XFEL) pulses. The methodology takes advantage of XFEL pulses ultrashort duration to outrun the destructive nature of the X-rays. Atomic movement, generally on the order of >50 fs, regulates the maximum pulse duration for intact specimen measurements. In this contribution, we report the electronic structure damage of a molecule with ultrashort X-ray pulses under preservation of the atoms' positions. A detailed investigation of the X-ray induced processes revealed that X-ray absorption events in the solvent produce a significant number of solvated electrons within attosecond and femtosecond timescales that are capable of coulombic interactions with the probed molecules. The presented findings show a strong influence on the experimental spectra coming from ionization of the probed atoms' surroundings leading to electronic structure modification much faster than direct absorption of photons. This work calls for consideration of this phenomenon in cases focused on samples embedded in, e.g., solutions or in matrices, which in fact concerns most of the experimental studies.

3.
Phys Chem Chem Phys ; 19(43): 29271-29277, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29067360

ABSTRACT

The potential of valence to core Al X-ray emission spectroscopy to determine aluminum distribution in ferrierite zeolites was investigated. The recorded emission spectra of four samples prepared with different structure directing agents exhibit slight variations in the position of the main emission peak and the intensity of its low energy shoulder. Theoretical calculations indicate that an increased intensity of the Kßx shoulder in the Al emission spectra can be linked to a predominant occupation of the T3 site by a single aluminum atom. This study thus suggests that valence to core X-ray emission spectroscopy can be applied to help determine the occupation of aluminum at crystallographic T-sites in zeolites.

4.
Sci Rep ; 5: 7644, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25561027

ABSTRACT

X-ray Free Electron Lasers (FELs) can produce extremely intense and very short pulses, down to below 10 femtoseconds (fs). Among the key applications are ultrafast time-resolved studies of dynamics of matter by observing responses to fast excitation pulses in a pump-probe manner. Detectors with sufficient time resolution for observing these processes are not available. Therefore, such experiments typically measure a sample's full dynamics by repeating multiple pump-probe cycles at different delay times. This conventional method assumes that the sample returns to an identical or very similar state after each cycle. Here we describe a novel approach that can provide a time trace of responses following a single excitation pulse, jitter-free, with fs timing precision. We demonstrate, in an X-ray diffraction experiment, how it can be applied to the investigation of ultrafast irreversible processes.

5.
Phys Rev Lett ; 112(17): 173003, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24836243

ABSTRACT

X-ray emission spectra recorded in the off-resonant regime carry information on the density of unoccupied states. It is known that by employing the Kramers-Heisenberg formalism, the high energy resolution off-resonant spectroscopy (HEROS) is equivalent to the x-ray absorption spectroscopy (XAS) technique and provides the same electronic state information. Moreover, in the present Letter we demonstrate that the shape of HEROS spectra is not modified by self-absorption effects. Therefore, in contrast to the fluorescence-based XAS techniques, the recorded shape of the spectra is independent of the sample concentration or thickness. The HEROS may thus be used as an experimental technique when precise information about specific absorption features and their strengths is crucial for chemical speciation or theoretical evaluation.

6.
Rev Sci Instrum ; 85(4): 043101, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24784587

ABSTRACT

The high-resolution von Hamos bent crystal spectrometer of the University of Fribourg was upgraded with a focused X-ray beam source with the aim of performing micro-sized X-ray fluorescence (XRF) measurements in the laboratory. The focused X-ray beam source integrates a collimating optics mounted on a low-power micro-spot X-ray tube and a focusing polycapillary half-lens placed in front of the sample. The performances of the setup were probed in terms of spatial and energy resolution. In particular, the fluorescence intensity and energy resolution of the von Hamos spectrometer equipped with the novel micro-focused X-ray source and a standard high-power water-cooled X-ray tube were compared. The XRF analysis capability of the new setup was assessed by measuring the dopant distribution within the core of Er-doped SiO2 optical fibers.


Subject(s)
Spectrometry, X-Ray Emission/instrumentation , Spectrometry, X-Ray Emission/methods , X-Rays
7.
Dalton Trans ; 43(23): 8599-608, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24406400

ABSTRACT

The two novel manganese(II) complexes with 2-hydroxymethylpyridine (2-CH2OHpy) {[Mn2(µ-Cl)2(2-CH2OHpy)4]Cl2·2H2O (1)} and 2-hydroxyethylpyridine (2-(CH2)2OHpy) {[Mn(2-(CH2)2OHpy)2(NCS)2] (2)} were synthesized and characterized by means of X-ray diffraction, IR, EPR, HF EPR spectroscopy, magnetic and TG/DTG data. The complexes show catalase-like activity in neutral aqueous solution since they were able to disproportionate H2O2 to harmless H2O and O2. Both complexes act as true catalysts since they reverted to their original form after depleting all the H2O2, as suggested by the operando resonant inelastic X-ray spectroscopy (RIXS) measurements.


Subject(s)
Alcohols/chemistry , Hydrogen Peroxide/chemistry , Manganese/chemistry , Organometallic Compounds/chemistry , Pyridines/chemistry , Catalysis , Ligands , Organometallic Compounds/chemical synthesis , Water/chemistry
8.
Struct Dyn ; 1(2): 021101, 2014 Mar.
Article in English | MEDLINE | ID: mdl-26798772

ABSTRACT

Physical, biological, and chemical transformations are initiated by changes in the electronic configuration of the species involved. These electronic changes occur on the timescales of attoseconds (10(-18) s) to femtoseconds (10(-15) s) and drive all subsequent electronic reorganization as the system moves to a new equilibrium or quasi-equilibrium state. The ability to detect the dynamics of these electronic changes is crucial for understanding the potential energy surfaces upon which chemical and biological reactions take place. Here, we report on the determination of the electronic structure of matter using a single self-seeded femtosecond x-ray pulse from the Linac Coherent Light Source hard x-ray free electron laser. By measuring the high energy resolution off-resonant spectrum (HEROS), we were able to obtain information about the electronic density of states with a single femtosecond x-ray pulse. We show that the unoccupied electronic states of the scattering atom may be determined on a shot-to-shot basis and that the measured spectral shape is independent of the large intensity fluctuations of the incoming x-ray beam. Moreover, we demonstrate the chemical sensitivity and single-shot capability and limitations of HEROS, which enables the technique to track the electronic structural dynamics in matter on femtosecond time scales, making it an ideal probe technique for time-resolved X-ray experiments.

9.
Rev Sci Instrum ; 84(12): 123102, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24387415

ABSTRACT

We report on the application of a two-dimensional position-sensitive area detector towards grazing emission x-ray fluorescence (GEXRF) spectroscopy. GEXRF allows for surface-sensitive studies with nanometer-scale accuracy in the depth direction by measuring the intensity variation of an x-ray fluorescence line with the grazing emission angle. The presented experimental setup is based on a fixed sample-detector arrangement and does not require any moving components. We show that the dispersion of the grazing emission angle along a position-sensitive detector allows to acquire with an excellent angular resolution a full GEXRF profile in a single measurement. Moreover, the use of a two-dimensional detector allows to perform experiments with an increased solid angle of detection per emission angle. This results in combination with the nonsequential and simultaneous acquisition of the GEXRF profiles of different emission lines in considerably reduced acquisition times. The realization, the demands, and the main characteristics of the scanning-free GEXRF setup will be presented. A few experimental examples will serve to illustrate the analytical possibilities offered by the presented setup.

10.
Rev Sci Instrum ; 83(10): 103105, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23126749

ABSTRACT

We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

11.
Phys Rev Lett ; 107(5): 053001, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21867065

ABSTRACT

Experimental evidence for the correlated two-electron one-photon transitions (1s(-2)→2s(-1)2p(-1)) following single-photon K-shell double ionization is reported. The double K-shell vacancy states in solid Mg, Al, and Si were produced by means of monochromatized synchrotron radiation, and the two-electron one-photon radiative transitions were observed by using a wavelength dispersive spectrometer. The two-electron one-photon transition energies and the branching ratios of the radiative one-electron to two-electron transitions were determined and compared to available perturbation theory predictions and configuration interaction calculations.

12.
J Synchrotron Radiat ; 17(3): 400-8, 2010 May.
Article in English | MEDLINE | ID: mdl-20400840

ABSTRACT

The development of a wavelength-dispersive spectrometer for microfluorescence analysis at the X-ray Microscopy ID21 beamline of the European Synchrotron Radiation Facility (ESRF) is reported. The spectrometer is based on a polycapillary optic for X-ray fluorescence collection and is operated in a flat-crystal geometry. The design considerations as well as operation characteristics of the spectrometer are presented. The achieved performances, in particular the energy resolution, are compared with the results of Monte Carlo simulations. Further improvement in the energy resolution, down to approximately eV range, by employing a double-crystal geometry is examined. Finally, examples of applications requiring both spatial and spectral resolutions are presented.

13.
Phys Rev Lett ; 102(7): 073006, 2009 Feb 20.
Article in English | MEDLINE | ID: mdl-19257666

ABSTRACT

We report on the photon energy dependence of the K-shell double photoionization (DPI) of Mg, Al, and Si. The DPI cross sections were derived from high-resolution measurements of x-ray spectra following the radiative decay of the K-shell double vacancy states. Our data evince the relative importance of the final-state electron-electron interaction to the DPI. By comparing the double-to-single K-shell photoionization cross-section ratios for neutral atoms with convergent close-coupling calculations for He-like ions, the effect of outer shell electrons on the K-shell DPI process is assessed. Universal scaling of the DPI cross sections with the effective nuclear charge for neutral atoms is revealed.

14.
Vector Borne Zoonotic Dis ; 7(3): 448-52, 2007.
Article in English | MEDLINE | ID: mdl-17767404

ABSTRACT

An equine West Nile virus (WNV) outbreak occurred in 2004 in the Camargue, a wetland area in the south of France where the virus was first reported in 1962 and re-emerged in 2000. WNV neutralizing antibodies were detected in resident birds and two isolates from a House Sparrow (Passer domesticus) and a Common Magpie (Pica pica) were completely sequenced. Phylogenetic analyses revealed that these isolates are closely related to strains previously found in horses in southern Europe and North Africa. More extensive investigation is required to determine whether WNV has been re-introduced or has become endemic in the Camargue.


Subject(s)
Bird Diseases/epidemiology , Bird Diseases/virology , Passeriformes/virology , West Nile Fever/veterinary , West Nile virus/physiology , Animals , Animals, Wild , Antibodies, Viral/blood , Cell Line , France , Immunoglobulin G/blood , Molecular Sequence Data , Phylogeny , West Nile Fever/epidemiology , West Nile Fever/virology , West Nile virus/classification , West Nile virus/genetics , West Nile virus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...