Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 51(4): 964-8, 2003 Feb 12.
Article in English | MEDLINE | ID: mdl-12568556

ABSTRACT

The mechanical and physical properties of glycerol-plasticized wheat gluten films dried at different temperatures (20, 50, and 80 degrees C) and relative humidities (35 and 70% RH) were investigated. Dispersion of wheat gluten was prepared at pH 11 in aqueous solution. Films were obtained by casting the wheat gluten suspension, followed by solvent evaporation in a temperature and relative humidity controlled chamber. Decreasing relative humidity altered most of the mechanical properties. At 35% RH, tensile strength increased when drying temperature increased. However, at 70% RH, tensile strength decreased when temperature increased. Thickness of the films decreased by increasing temperature. Hypothetical coating strength increased with increasing drying temperature at 35% RH. However, at 70% RH, a maximum value was observed at 50 degrees C. Films produced at 80 degrees C exhibited low solubility in aqueous solution. Addition of 1.5% (w/v) sodium dodecyl sulfate increased solubility of all of the films except the film dried at 50 degrees C and 70% RH. Overall, drying temperature and relative humidity affected mechanical and physical properties of the wheat gluten films. However, the effect of drying temperature was more pronounced than the effect of relative humidity.


Subject(s)
Desiccation , Food Packaging , Glutens/chemistry , Humidity , Temperature , Triticum/chemistry , Chemical Phenomena , Chemistry, Physical , Glycerol , Mechanics , Microscopy, Electron, Scanning , Plasticizers , Sodium Dodecyl Sulfate/pharmacology , Solubility , Tensile Strength
2.
Bioresour Technol ; 87(3): 239-46, 2003 May.
Article in English | MEDLINE | ID: mdl-12507862

ABSTRACT

The possibility of using xylan, as an agricultural by-product, for production of composite films in combinations with wheat gluten was investigated. Different levels of xylan (0-40% w/w) were incorporated into wheat gluten to form biodegradable composite films. Films were prepared at pH 4 and 11, and dried at either uncontrolled or controlled conditions. The mechanical properties, solubilities and water vapour transfer rate (WVTR) of the composite films were studied. Films were obtained with added xylan without decreasing film-forming quality. Xylan can be used as an additive, as much as 40% (w/w), in wheat gluten films. Changing pH, wheat gluten/xylan ratio, xylan type and drying conditions affected mechanical and solubility properties, however, WVTR was not affected by xylan additions. Wheat gluten/xylan composite films having different characteristics can be produced depending on xylan type, composition and process conditions.


Subject(s)
Conservation of Natural Resources , Glutens/chemistry , Polysaccharides/chemistry , Agriculture , Biocompatible Materials , Biodegradation, Environmental , Materials Testing , Solubility , Triticum/chemistry , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...