Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Interact ; 345: 109558, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34147486

ABSTRACT

m-(Tert-butyl) trifluoroacetophenone (TFK), a slow-binding inhibitor of acetylcholinesterase (AChE), a transition state analog of acetylcholine, was investigated as a potential neuroprotectant of central and peripheral AChE against organophosphate paraoxon (POX) toxicity. Acute toxicity and pharmacological effects of TFK were investigated on mice and rats. Intraperitoneal administered TFK has low acute toxicity in mice (LD50 ≈ 19 mg/kg). Effects on motor function as investigated by rotarod and open field tests showed that TFK up to 5 mg/kg did not alter motor coordination and stereotypical exploration behavior of mice. Passive avoidance test showed that 1 or 5 mg/kg TFK restored memory impairment in scopolamine-induced Alzheimer's disease-like dementia in rats. Pretreatment of mice with 5 mg/kg TFK, 2-3 h before challenge by 2xLD50 POX provided a modest and short protection against POX toxicity. Futhermore, analysis of POX-induced neuronal degeneration by using fluoro-jade B staining showed that TFK pretreatment, at the dose 5 mg/kg before POX challenge, significantly reduced the density of apoptotic cells in hippocampus and entorhinal cortex of mice. Thus, TFK is capable of reducing POX-induced neurotoxicity.


Subject(s)
Acetophenones/chemistry , Acetophenones/pharmacology , Acetylcholine/analogs & derivatives , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Memory Disorders/drug therapy , Paraoxon/toxicity , Acetophenones/therapeutic use , Animals , Cholinesterase Inhibitors/therapeutic use , Hippocampus/drug effects , Hippocampus/physiopathology , Memory Disorders/chemically induced , Memory Disorders/physiopathology , Mice
2.
Nanoscale ; 12(25): 13757-13770, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32573587

ABSTRACT

New lipid-based nanomaterials and multi-target directed ligands (MTDLs) based on sterically hindered phenol, containing a quaternary ammonium moiety (SHP-s-R, with s = 2,3) of varying hydrophobicity (R = CH2Ph and CnH2n+1, with n = 8, 10, 12, 16), have been prepared as potential drugs against Alzheimer's disease (AD). SHP-s-R are inhibitors of human cholinesterases with antioxidant properties. The inhibitory potency of SHP-s-R and selectivity ratio of cholinesterase inhibition were found to significantly depend on the length of the methylene spacer (s) and alkyl chain length. The compound SHP-2-16 showed the best IC50 for human AChE and the highest selectivity, being 30-fold more potent than for human BChE. Molecular modeling of SHP-2-16 binding to human AChE suggests that this compound is a dual binding site inhibitor that interacts with both the peripheral anionic site and catalytic active site. The relationship between self-assembly parameters (CMC, solubilization capacity, aggregation number), antioxidant activity and a toxicological parameter (hemolytic action on human red blood cells) was investigated. Two sterically hindered phenols (SHP-2-Bn and SHP-2-R) were loaded into L-α-phosphatidylcholine (PC) nanoparticles by varying the SHP alkyl chain length. For the brain AChE inhibition assay, PC/SHP-2-Bn/SHP-2-16 nanoparticles were administered to rats intranasally at a dose of 8 mg kg-1. The Morris water maze experiment showed that scopolamine-induced AD-like dementia in rats treated with PC/SHP-2-Bn/SHP-2-16 nanoparticles was significantly reduced. This is the first example of cationic SHP-phospholipid nanoparticles for inhibition of brain cholinesterases realized by the use of intranasal administration. This route has promising potential for the treatment of AD.


Subject(s)
Alzheimer Disease , Administration, Intranasal , Alzheimer Disease/drug therapy , Animals , Cholinesterase Inhibitors/pharmacology , Lipids/therapeutic use , Phenol/therapeutic use , Phenols , Rats , Structure-Activity Relationship
3.
Eur J Med Chem ; 185: 111787, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31675511

ABSTRACT

New uncharged conjugates of 6-methyluracil derivatives with imidazole-2-aldoxime and 1,2,4-triazole-3-hydroxamic acid units were synthesized and studied as reactivators of organophosphate-inhibited cholinesterase. Using paraoxon (POX) as a model organophosphate, it was shown that 6-methyluracil derivatives linked with hydroxamic acid are able to reactivate POX-inhibited human acetylcholinesterase (AChE) in vitro. The reactivating efficacy of one compound (5b) is lower than that of pyridinium-2-aldoxime (2-PAM). Meanwhile, unlike 2-PAM, in vivo study showed that the lead compound 5b is able: (1) to reactivate POX-inhibited AChE in the brain; (2) to decrease death of neurons and, (3) to prevent memory impairment in rat model of POX-induced neurodegeneration.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Paraoxon/antagonists & inhibitors , Uracil/analogs & derivatives , Animals , Brain/enzymology , Dose-Response Relationship, Drug , Humans , Hydroxamic Acids/chemistry , Ligands , Maze Learning/drug effects , Mice , Molecular Docking Simulation , Molecular Structure , Paraoxon/pharmacology , Paraoxon/toxicity , Quantum Theory , Rats , Rats, Wistar , Structure-Activity Relationship , Uracil/chemical synthesis , Uracil/chemistry , Uracil/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...