Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Cell Calcium ; 119: 102869, 2024 May.
Article in English | MEDLINE | ID: mdl-38484433

ABSTRACT

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic myelopoietic growth factor and proinflammatory cytokine, clinically used for multiple indications and serving as a promising target for treatment of many disorders, including cancer, multiple sclerosis, rheumatoid arthritis, psoriasis, asthma, COVID-19. We have previously shown that dimeric Ca2+-bound forms of S100A6 and S100P proteins, members of the multifunctional S100 protein family, are specific to GM-CSF. To probe selectivity of these interactions, the affinity of recombinant human GM-CSF to dimeric Ca2+-loaded forms of 18 recombinant human S100 proteins was studied by surface plasmon resonance spectroscopy. Of them, only S100A4 protein specifically binds to GM-CSF with equilibrium dissociation constant, Kd, values of 0.3-2 µM, as confirmed by intrinsic fluorescence and chemical crosslinking data. Calcium removal prevents S100A4 binding to GM-CSF, whereas monomerization of S100A4/A6/P proteins disrupts S100A4/A6 interaction with GM-CSF and induces a slight decrease in S100P affinity for GM-CSF. Structural modelling indicates the presence in the GM-CSF molecule of a conserved S100A4/A6/P-binding site, consisting of the residues from its termini, helices I and III, some of which are involved in the interaction with GM-CSF receptors. The predicted involvement of the 'hinge' region and F89 residue of S100P in GM-CSF recognition was confirmed by mutagenesis. Examination of S100A4/A6/P ability to affect GM-CSF signaling showed that S100A4/A6 inhibit GM-CSF-induced suppression of viability of monocytic THP-1 cells. The ability of the S100 proteins to modulate GM-CSF activity is relevant to progression of various neoplasms and other diseases, according to bioinformatics analysis. The direct regulation of GM-CSF signaling by extracellular forms of the S100 proteins should be taken into account in the clinical use of GM-CSF and development of the therapeutic interventions targeting GM-CSF or its receptors.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , S100 Proteins , Humans , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , S100 Proteins/metabolism , Recombinant Proteins/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/chemistry , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Protein Binding , Binding Sites
2.
Biomolecules ; 13(9)2023 09 04.
Article in English | MEDLINE | ID: mdl-37759746

ABSTRACT

S100 is a family of over 20 structurally homologous, but functionally diverse regulatory (calcium/zinc)-binding proteins of vertebrates. The involvement of S100 proteins in numerous vital (patho)physiological processes is mediated by their interaction with various (intra/extra)cellular protein partners, including cell surface receptors. Furthermore, recent studies have revealed the ability of specific S100 proteins to modulate cell signaling via direct interaction with cytokines. Previously, we revealed the binding of ca. 71% of the four-helical cytokines via the S100P protein, due to the presence in its molecule of a cytokine-binding site overlapping with the binding site for the S100P receptor. Here, we show that another S100 protein, S100A6 (that has a pairwise sequence identity with S100P of 35%), specifically binds numerous four-helical cytokines. We have studied the affinity of the recombinant forms of 35 human four-helical cytokines from all structural families of this fold to Ca2+-loaded recombinant human S100A6, using surface plasmon resonance spectroscopy. S100A6 recognizes 26 of the cytokines from all families of this fold, with equilibrium dissociation constants from 0.3 nM to 12 µM. Overall, S100A6 interacts with ca. 73% of the four-helical cytokines studied to date, with a selectivity equivalent to that for the S100P protein, with the differences limited to the binding of interleukin-2 and oncostatin M. The molecular docking study evidences the presence in the S100A6 molecule of a cytokine-binding site, analogous to that found in S100P. The findings argue the presence in some of the promiscuous members of the S100 family of a site specific to a wide range of four-helical cytokines. This unique feature of the S100 proteins potentially allows them to modulate the activity of the numerous four-helical cytokines in the disorders accompanied by an excessive release of the cytokines.


Subject(s)
Immunologic Factors , S100 Proteins , Humans , Animals , S100 Calcium Binding Protein A6 , Molecular Docking Simulation , Binding Sites , Cell Cycle Proteins
3.
Protein Pept Lett ; 30(2): 108-115, 2023.
Article in English | MEDLINE | ID: mdl-36624639

ABSTRACT

BACKGROUND: Small Ca2+-binding protein parvalbumin possesses two strong Ca2+/Mg2+- binding sites located within two EF-hand domains. Most parvalbumins have no tryptophan residues, while cod protein contains a single tryptophan residue, which fluorescence (spectrum maximum position and fluorescence quantum yield) is highly sensitive to the Ca2+ association/dissociation. OBJECTIVE: Intrinsic protein fluorescence of cod parvalbumin can be used for elucidating the mechanism of Ca2+ binding to this protein. Fluorescence of the single tryptophan residue of cod parvalbumin has been used to monitor Ca2+-induced changes in the protein, both in steady-state and kinetic mode. METHODS: Steady-state fluorescence spectra of cod parvalbumin were measured using Cary Eclipse spectrofluorimeter. Stopped-flow accessories in combination with a novel high-speed spectrofluorimeter were used for measurements of kinetics of Ca2+ dissociation from cod parvalbumin after fast mixing of Ca2+-loaded protein with a chelator of divalent metal cations ethylenediaminetetraacetic acid (EDTA). RESULTS: The fluorescent phase plots (fluorescence intensity at a fixed wavelength plotted against a fluorescence intensity at another fixed wavelength), constructed from steady state and kinetical data, shows a break at [Ca2+]/[parvalbumin] ratio close to 1. This means that the transition passes through an intermediate state, which is a protein with one bound calcium ion. These observations indicate that the binding of Ca2+ to cod parvalbumin is sequential. CONCLUSION: The results of the present spectral study showed that the binding of Ca2+ to cod parvalbumin is a sequential process. Calcium dissociation rate constants for the two binding sites of cod parvalbumin evaluated from the kinetic data are koff1 = 1.0 s-1 and koff2 = 1.5 s-1.


Subject(s)
Calcium , Parvalbumins , Binding Sites , Calcium/chemistry , Cations , Cations, Divalent , Kinetics , Parvalbumins/chemistry , Parvalbumins/metabolism , Protein Binding , Spectrometry, Fluorescence , Gadiformes
4.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36674570

ABSTRACT

A giant multidomain protein of striated and smooth vertebrate muscles, titin, consists of tandems of immunoglobulin (Ig)- and fibronectin type III (FnIII)-like domains representing ß-sandwiches, as well as of disordered segments. Chicken smooth muscles express several titin isoforms of ~500-1500 kDa. Using various structural-analysis methods, we investigated in vitro nonspecific amyloid aggregation of the high-molecular-weight isoform of chicken smooth-muscle titin (SMTHMW, ~1500 kDa). As confirmed by X-ray diffraction analysis, under near-physiological conditions, the protein formed amorphous amyloid aggregates with a quaternary cross-ß structure within a relatively short time (~60 min). As shown by circular dichroism and Fourier-transform infrared spectroscopy, the quaternary cross-ß structure-unlike other amyloidogenic proteins-formed without changes in the SMTHMW secondary structure. SMTHMW aggregates partially disaggregated upon increasing the ionic strength above the physiological level. Based on the data obtained, it is not the complete protein but its particular domains/segments that are likely involved in the formation of intermolecular interactions during SMTHMW amyloid aggregation. The discovered properties of titin position this protein as an object of interest for studying amyloid aggregation in vitro and expanding our views of the fundamentals of amyloidogenesis.


Subject(s)
Amyloid , Avian Proteins , Chickens , Connectin , Muscle, Smooth , Animals , Amyloid/metabolism , Amyloidogenic Proteins/metabolism , Chickens/metabolism , Connectin/metabolism , Muscle, Smooth/metabolism , Avian Proteins/metabolism
5.
Int J Mol Sci ; 23(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36555597

ABSTRACT

Tumor necrosis factor (TNF) inhibitors (anti-TNFs) represent a cornerstone of the treatment of various immune-mediated inflammatory diseases and are among the most commercially successful therapeutic agents. Knowledge of TNF binding partners is critical for identification of the factors able to affect clinical efficacy of the anti-TNFs. Here, we report that among eighteen representatives of the multifunctional S100 protein family, only S100A11, S100A12 and S100A13 interact with the soluble form of TNF (sTNF) in vitro. The lowest equilibrium dissociation constants (Kd) for the complexes with monomeric sTNF determined using surface plasmon resonance spectroscopy range from 2 nM to 28 nM. The apparent Kd values for the complexes of multimeric sTNF with S100A11/A12 estimated from fluorimetric titrations are 0.1-0.3 µM. S100A12/A13 suppress the cytotoxic activity of sTNF against Huh-7 cells, as evidenced by the MTT assay. Structural modeling indicates that the sTNF-S100 interactions may interfere with the sTNF recognition by the therapeutic anti-TNFs. Bioinformatics analysis reveals dysregulation of TNF and S100A11/A12/A13 in numerous disorders. Overall, we have shown a novel potential regulatory role of the extracellular forms of specific S100 proteins that may affect the efficacy of anti-TNF treatment in various diseases.


Subject(s)
Receptors, Tumor Necrosis Factor , S100 Proteins , Receptors, Tumor Necrosis Factor/metabolism , S100A12 Protein , Tumor Necrosis Factor Inhibitors , Tumor Necrosis Factor-alpha/metabolism
6.
Biomolecules ; 12(11)2022 11 16.
Article in English | MEDLINE | ID: mdl-36421712

ABSTRACT

Caveolin-1 is a cholesterol-binding scaffold protein, which is localized in detergent-resistant membrane (DRM) rafts and interacts with components of signal transduction systems, including visual cascade. Among these components are neuronal calcium sensors (NCSs), some of which are redox-sensitive proteins that respond to calcium signals by modulating the activity of multiple intracellular targets. Here, we report that the formation of the caveolin-1 complex with recoverin, a photoreceptor NCS serving as the membrane-binding regulator of rhodopsin kinase (GRK1), is a redox-dependent process. Biochemical and biophysical in vitro experiments revealed a two-fold decreased affinity of recoverin to caveolin-1 mutant Y14E mimicking its oxidative stress-induced phosphorylation of the scaffold protein. At the same time, wild-type caveolin-1 demonstrated a 5-10-fold increased affinity to disulfide dimer of recoverin (dRec) or its thiol oxidation mimicking the C39D mutant. The formation of dRec in vitro was not affected by caveolin-1 but was significantly potentiated by zinc, the well-known mediator of redox homeostasis. In the MDCK cell model, oxidative stress indeed triggered Y14 phosphorylation of caveolin-1 and disulfide dimerization of recoverin. Notably, oxidative conditions promoted the accumulation of phosphorylated caveolin-1 in the plasma membrane and the recruitment of recoverin to the same sites. Co-localization of these proteins was preserved upon depletion of intracellular calcium, i.e., under conditions reducing membrane affinity of recoverin but favoring its interaction with caveolin-1. Taken together, these data suggest redox regulation of the signaling complex between recoverin and caveolin-1. During oxidative stress, the high-affinity interaction of thiol-oxidized recoverin with caveolin-1/DRMs may disturb the light-induced translocation of the former within photoreceptors and affect rhodopsin desensitization.


Subject(s)
Calcium , Caveolin 1 , Recoverin/metabolism , Calcium/metabolism , Caveolin 1/genetics , Caveolin 1/metabolism , Oxidation-Reduction , Disulfides/metabolism , Vision, Ocular , Sulfhydryl Compounds
7.
Int J Mol Sci ; 23(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36233301

ABSTRACT

S100 proteins are multifunctional calcium-binding proteins of vertebrates that act intracellularly, extracellularly, or both, and are engaged in the progression of many socially significant diseases. Their extracellular action is typically mediated by the recognition of specific receptor proteins. Recent studies indicate the ability of some S100 proteins to affect cytokine signaling through direct interaction with cytokines. S100P was shown to be the S100 protein most actively involved in interactions with some four-helical cytokines. To assess the selectivity of the S100P protein binding to four-helical cytokines, we have probed the interaction of Ca2+-bound recombinant human S100P with a panel of 32 four-helical human cytokines covering all structural families of this fold, using surface plasmon resonance spectroscopy. A total of 22 cytokines from all families of four-helical cytokines are S100P binders with the equilibrium dissociation constants, Kd, ranging from 1 nM to 3 µM (below the Kd value for the S100P complex with the V domain of its conventional receptor, receptor for advanced glycation end products, RAGE). Molecular docking and mutagenesis studies revealed the presence in the S100P molecule of a cytokine-binding site, which overlaps with the RAGE-binding site. Since S100 binding to four-helical cytokines inhibits their signaling in some cases, the revealed ability of the S100P protein to interact with ca. 71% of the four-helical cytokines indicates that S100P may serve as a poorly selective inhibitor of their action.


Subject(s)
Calcium-Binding Proteins , Calcium , Cytokines , Calcium/metabolism , Calcium, Dietary , Calcium-Binding Proteins/metabolism , Carrier Proteins/metabolism , Cytokines/metabolism , Humans , Immunologic Factors , Molecular Docking Simulation , Neoplasm Proteins/metabolism , Protein Binding , Receptor for Advanced Glycation End Products/metabolism , S100 Proteins/metabolism
8.
Int J Mol Sci ; 23(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35682848

ABSTRACT

The deposition of amyloid-ß peptide (Aß) in the brain is a critical event in the progression of Alzheimer's disease (AD). This Aß deposition could be prevented by directed enhancement of Aß binding to its natural depot, human serum albumin (HSA). Previously, we revealed that specific endogenous ligands of HSA improve its affinity to monomeric Aß. We show here that an exogenous HSA ligand, ibuprofen (IBU), exerts the analogous effect. Plasmon resonance spectroscopy data evidence that a therapeutic IBU level increases HSA affinity to monomeric Aß40/Aß42 by a factor of 3-5. Using thioflavin T fluorescence assay and transmission electron microcopy, we show that IBU favors the suppression of Aß40 fibrillation by HSA. Molecular docking data indicate partial overlap between the IBU/Aß40-binding sites of HSA. The revealed enhancement of the HSA-Aß interaction by IBU and the strengthened inhibition of Aß fibrillation by HSA in the presence of IBU could contribute to the neuroprotective effects of the latter, previously observed in mouse and human studies of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Ibuprofen/pharmacology , Ibuprofen/therapeutic use , Ligands , Mice , Molecular Docking Simulation , Peptide Fragments/metabolism , Serum Albumin/metabolism , Serum Albumin, Human
9.
Int J Mol Sci ; 23(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35216109

ABSTRACT

Interferon-ß (IFN-ß) is a pleiotropic cytokine secreted in response to various pathological conditions and is clinically used for therapy of multiple sclerosis. Its application for treatment of cancer, infections and pulmonary diseases is limited by incomplete understanding of regulatory mechanisms of its functioning. Recently, we reported that IFN-ß activity is affected by interactions with S100A1, S100A4, S100A6, and S100P proteins, which are members of the S100 protein family of multifunctional Ca2+-binding proteins possessing cytokine-like activities (Int J Mol Sci. 2020;21(24):9473). Here we show that IFN-ß interacts with one more representative of the S100 protein family, the S100B protein, involved in numerous oncological and neurological diseases. The use of chemical crosslinking, intrinsic fluorescence, and surface plasmon resonance spectroscopy revealed IFN-ß binding to Ca2+-loaded dimeric and monomeric forms of the S100B protein. Calcium depletion blocks the S100B-IFN-ß interaction. S100B monomerization increases its affinity to IFN-ß by 2.7 orders of magnitude (equilibrium dissociation constant of the complex reaches 47 pM). Crystal violet assay demonstrated that combined application of IFN-ß and S100B (5-25 nM) eliminates their inhibitory effects on MCF-7 cell viability. Bioinformatics analysis showed that the direct modulation of IFN-ß activity by the S100B protein described here could be relevant to progression of multiple oncological and neurological diseases.


Subject(s)
Interferon-beta/metabolism , S100 Calcium Binding Protein beta Subunit/metabolism , Animals , CHO Cells , Calcium/metabolism , Cell Line, Tumor , Cricetulus , Humans , MCF-7 Cells , Nervous System Diseases/metabolism , Protein Binding/physiology
10.
Biomolecules ; 12(1)2022 01 12.
Article in English | MEDLINE | ID: mdl-35053268

ABSTRACT

Erythropoietin (EPO) is a clinically significant four-helical cytokine, exhibiting erythropoietic, cytoprotective, immunomodulatory, and cancer-promoting activities. Despite vast knowledge on its signaling pathways and physiological effects, extracellular factors regulating EPO activity remain underexplored. Here we show by surface plasmon resonance spectroscopy, that among eighteen members of Ca2+-binding proteins of the S100 protein family studied, only S100A2, S100A6 and S100P proteins specifically recognize EPO with equilibrium dissociation constants ranging from 81 nM to 0.5 µM. The interactions occur exclusively under calcium excess. Bioinformatics analysis showed that the EPO-S100 interactions could be relevant to progression of neoplastic diseases, including cancer, and other diseases. The detailed knowledge of distinct physiological effects of the EPO-S100 interactions could favor development of more efficient clinical implications of EPO. Summing up our data with previous findings, we conclude that S100 proteins are potentially able to directly affect functional activities of specific members of all families of four-helical cytokines, and cytokines of other structural superfamilies.


Subject(s)
Erythropoietin , S100 Proteins , Calcium/metabolism , Erythropoietin/metabolism , Protein Binding , Protein Transport , S100 Proteins/metabolism
11.
Cell Calcium ; 101: 102520, 2022 01.
Article in English | MEDLINE | ID: mdl-34933172

ABSTRACT

Cytokines of interleukin-6 (IL-6) family are important signaling proteins involved in various physiological and pathological processes. Earlier, we described interactions between IL-11 and S100P/B proteins from the family of S100 proteins engaged in the pathogenesis of numerous diseases. We probed here interactions between seven IL-6 family cytokines (IL-6, IL-11, OSM, LIF, CNTF, CT-1, and CLCF1) and fourteen S100 proteins (S100A1/A4/A6/A7/A8/A9/A10/A11/A12/A13/A14/A15/B/P). Surface plasmon resonance spectroscopy revealed formation of calcium-dependent complexes between IL-11, OSM, CNTF, CT-1, and CLCF1 and distinct subsets of S100A1/A6/B/P proteins with equilibrium dissociation constants of 19 nM - 12 µM. The existence of a network of interactions between Ca2+-loaded S100 proteins and IL-6 family cytokines suggest regulation of these cytokines by the extracellular forms of S100 proteins.


Subject(s)
Interleukin-6 , Receptors, Cytokine , Cytokine Receptor gp130 , Cytokines/metabolism , Receptors, Cytokine/metabolism , S100 Proteins
12.
Int J Mol Sci ; 22(22)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34830487

ABSTRACT

Neuronal calcium sensor-1 (NCS-1) is a four-EF-hand ubiquitous signaling protein modulating neuronal function and survival, which participates in neurodegeneration and carcinogenesis. NCS-1 recognizes specific sites on cellular membranes and regulates numerous targets, including G-protein coupled receptors and their kinases (GRKs). Here, with the use of cellular models and various biophysical and computational techniques, we demonstrate that NCS-1 is a redox-sensitive protein, which responds to oxidizing conditions by the formation of disulfide dimer (dNCS-1), involving its single, highly conservative cysteine C38. The dimer content is unaffected by the elevation of intracellular calcium levels but increases to 10-30% at high free zinc concentrations (characteristic of oxidative stress), which is accompanied by accumulation of the protein in punctual clusters in the perinuclear area. The formation of dNCS-1 represents a specific Zn2+-promoted process, requiring proper folding of the protein and occurring at redox potential values approaching apoptotic levels. The dimer binds Ca2+ only in one EF-hand per monomer, thereby representing a unique state, with decreased α-helicity and thermal stability, increased surface hydrophobicity, and markedly improved inhibitory activity against GRK1 due to 20-fold higher affinity towards the enzyme. Furthermore, dNCS-1 can coordinate zinc and, according to molecular modeling, has an asymmetrical structure and increased conformational flexibility of the subunits, which may underlie their enhanced target-binding properties. In HEK293 cells, dNCS-1 can be reduced by the thioredoxin system, otherwise accumulating as protein aggregates, which are degraded by the proteasome. Interestingly, NCS-1 silencing diminishes the susceptibility of Y79 cancer cells to oxidative stress-induced apoptosis, suggesting that NCS-1 may mediate redox-regulated pathways governing cell death/survival in response to oxidative conditions.


Subject(s)
Calcium Signaling/genetics , G-Protein-Coupled Receptor Kinase 1/genetics , Neoplasms/genetics , Neuronal Calcium-Sensor Proteins/genetics , Neurons/metabolism , Neuropeptides/genetics , Calcium/metabolism , Calcium-Binding Proteins/genetics , Cell Line, Tumor , Dimerization , Disulfides/chemistry , EF Hand Motifs/genetics , HEK293 Cells , Humans , Kinetics , Neoplasms/pathology , Neuronal Calcium-Sensor Proteins/antagonists & inhibitors , Neurons/chemistry , Neuropeptides/antagonists & inhibitors , Oxidation-Reduction , Receptors, G-Protein-Coupled/genetics , Signal Transduction/genetics , Zinc/metabolism
13.
Biomolecules ; 11(8)2021 08 05.
Article in English | MEDLINE | ID: mdl-34439824

ABSTRACT

Strontium salts are used for treatment of osteoporosis and bone cancer, but their impact on calcium-mediated physiological processes remains obscure. To explore Sr2+ interference with Ca2+ binding to proteins of the EF-hand family, we studied Sr2+/Ca2+ interaction with a canonical EF-hand protein, α-parvalbumin (α-PA). Evaluation of the equilibrium metal association constants for the active Ca2+ binding sites of recombinant human α-PA ('CD' and 'EF' sites) from fluorimetric titration experiments and isothermal titration calorimetry data gave 4 × 109 M-1 and 4 × 109 M-1 for Ca2+, and 2 × 107 M-1 and 2 × 106 M-1 for Sr2+. Inactivation of the EF site by homologous substitution of the Ca2+-coordinating Glu in position 12 of the EF-loop by Gln decreased Ca2+/Sr2+ affinity of the protein by an order of magnitude, whereas the analogous inactivation of the CD site induced much deeper suppression of the Ca2+/Sr2+ affinity. These results suggest that Sr2+ and Ca2+ bind to CD/EF sites of α-PA and the Ca2+/Sr2+ binding are sequential processes with the CD site being occupied first. Spectrofluorimetric Sr2+ titration of the Ca2+-loaded α-PA revealed presence of secondary Sr2+ binding site(s) with an apparent equilibrium association constant of 4 × 105 M-1. Fourier-transform infrared spectroscopy data evidence that Ca2+/Sr2+-loaded forms of α-PA exhibit similar states of their COO- groups. Near-UV circular dichroism (CD) data show that Ca2+/Sr2+ binding to α-PA induce similar changes in symmetry of microenvironment of its Phe residues. Far-UV CD experiments reveal that Ca2+/Sr2+ binding are accompanied by nearly identical changes in secondary structure of α-PA. Meanwhile, scanning calorimetry measurements show markedly lower Sr2+-induced increase in stability of tertiary structure of α-PA, compared to the Ca2+-induced effect. Theoretical modeling using Density Functional Theory computations with Polarizable Continuum Model calculations confirms that Ca2+-binding sites of α-PA are well protected against exchange of Ca2+ for Sr2+ regardless of coordination number of Sr2+, solvent exposure or rigidity of sites. The latter appears to be a key determinant of the Ca2+/Sr2+ selectivity. Overall, despite lowered affinity of α-PA to Sr2+, the latter competes with Ca2+ for the same EF-hands and induces similar structural rearrangements. The presence of a secondary Sr2+ binding site(s) could be a factor contributing to Sr2+ impact on the functional activity of proteins.


Subject(s)
Calcium-Binding Proteins/metabolism , Calcium/metabolism , Parvalbumins/metabolism , Strontium/metabolism , Binding Sites , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/genetics , Cations, Divalent , Cloning, Molecular , Density Functional Theory , EF Hand Motifs , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kinetics , Parvalbumins/chemistry , Parvalbumins/genetics , Protein Binding , Protein Stability , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Solutions
14.
Int J Mol Sci ; 22(11)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072751

ABSTRACT

Prevention of amyloid ß peptide (Aß) deposition via facilitation of Aß binding to its natural depot, human serum albumin (HSA), is a promising approach to preclude Alzheimer's disease (AD) onset and progression. Previously, we demonstrated the ability of natural HSA ligands, fatty acids, to improve the affinity of this protein to monomeric Aß by a factor of 3 (BBRC, 510(2), 248-253). Using plasmon resonance spectroscopy, we show here that another HSA ligand related to AD pathogenesis, serotonin (SRO), increases the affinity of the Aß monomer to HSA by a factor of 7/17 for Aß40/Aß42, respectively. Meanwhile, the structurally homologous SRO precursor, tryptophan (TRP), does not affect HSA's affinity to monomeric Aß, despite slowdown of the association and dissociation processes. Crosslinking with glutaraldehyde and dynamic light scattering experiments reveal that, compared with the TRP-induced effects, SRO binding causes more marked changes in the quaternary structure of HSA. Furthermore, molecular docking reveals distinct structural differences between SRO/TRP complexes with HSA. The disintegration of the serotonergic system during AD pathogenesis may contribute to Aß release from HSA in the central nervous system due to impairment of the SRO-mediated Aß trapping by HSA.


Subject(s)
Amyloid beta-Peptides/metabolism , Serotonin/metabolism , Serum Albumin, Human/metabolism , Alzheimer Disease , Amyloid beta-Peptides/chemistry , Binding Sites , Humans , Ligands , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Multimerization , Serotonin/chemistry , Serum Albumin, Human/chemistry , Structure-Activity Relationship , Temperature
15.
Int J Mol Sci ; 21(24)2020 Dec 13.
Article in English | MEDLINE | ID: mdl-33322098

ABSTRACT

Interferon-ß (IFN-ß) is a pleiotropic cytokine used for therapy of multiple sclerosis, which is also effective in suppression of viral and bacterial infections and cancer. Recently, we reported a highly specific interaction between IFN-ß and S100P lowering IFN-ß cytotoxicity to cancer cells (Int J Biol Macromol. 2020; 143: 633-639). S100P is a member of large family of multifunctional Ca2+-binding proteins with cytokine-like activities. To probe selectivity of IFN-ß-S100 interaction with respect to S100 proteins, we used surface plasmon resonance spectroscopy, chemical crosslinking, and crystal violet assay. Among the thirteen S100 proteins studied S100A1, S100A4, and S100A6 proteins exhibit strictly Ca2+-dependent binding to IFN-ß with equilibrium dissociation constants, Kd, of 0.04-1.5 µM for their Ca2+-bound homodimeric forms. Calcium depletion abolishes the S100-IFN-ß interactions. Monomerization of S100A1/A4/A6 decreases Kd values down to 0.11-1.0 nM. Interferon-α is unable of binding to the S100 proteins studied. S100A1/A4 proteins inhibit IFN-ß-induced suppression of MCF-7 cells viability. The revealed direct influence of specific S100 proteins on IFN-ß activity uncovers a novel regulatory role of particular S100 proteins, and opens up novel approaches to enhancement of therapeutic efficacy of IFN-ß.


Subject(s)
Calcium/metabolism , Interferon-beta/metabolism , S100 Proteins/metabolism , Amino Acid Sequence , Calcium/chemistry , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Cardiovascular Diseases/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cell Survival/drug effects , Dimerization , Humans , Kinetics , MCF-7 Cells , Models, Chemical , Molecular Docking Simulation , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Nervous System Diseases/metabolism , Protein Binding , Protein Conformation/drug effects , S100 Calcium Binding Protein A6/chemistry , S100 Calcium Binding Protein A6/metabolism , S100 Calcium-Binding Protein A4/chemistry , S100 Calcium-Binding Protein A4/metabolism , S100 Proteins/chemistry , Sequence Alignment , Surface Plasmon Resonance
16.
Int J Biol Macromol ; 143: 633-639, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31821828

ABSTRACT

S100 proteins are EF-hand calcium-binding proteins of vertebrates exerting numerous intra- and extracellular actions and involved into multiple diseases. Some of S100 proteins serve as extracellular damage signals via interaction with receptors. Although several S100 proteins directly bind specific cytokines, this phenomenon remains underexplored. Using chemical crosslinking, intrinsic fluorescence and surface plasmon resonance spectroscopies, we show that S100P protein interacts with interferon beta (IFN-ß) depending on calcium level and oligomeric state of S100P. Dimeric Ca2+-loaded S100P binds IFN-ß with equilibrium dissociation constants, Kd, of 0.05-0.6 µM. S100P monomerization favors this interaction decreasing Kd values down to 0.3-2 nM. Calcium depletion drastically lowers S100P affinity to IFN-ß. Other related EF-hand proteins studied (calmodulin, α-parvalbumin and S100G) do not bind IFN-ß, thereby confirming selectivity of the S100P - IFN-ß interaction. Crystal violet assay reveals that the S100P binding suppresses IFN-ß cytotoxicity to MCF-7 breast cancer cells. Since several cancers (breast, colon, lung, liver, etc.) exhibit dysregulated functioning of S100P and IFN-ß, their interaction could be relevant to the cancer progression and directed therapeutic interventions.


Subject(s)
Calcium-Binding Proteins/metabolism , Interferon-beta/metabolism , Neoplasm Proteins/metabolism , Calcium/metabolism , Calcium-Binding Proteins/chemistry , Cell Death , Cell Survival , Humans , Interferon-beta/chemistry , Kinetics , Ligands , MCF-7 Cells , Models, Biological , Neoplasm Proteins/chemistry , Protein Binding , Protein Conformation
17.
Beilstein J Nanotechnol ; 9: 1035-1039, 2018.
Article in English | MEDLINE | ID: mdl-29719755

ABSTRACT

Terahertz photoconductivity in heterostructures based on n-type Hg1-x Cd x Te epitaxial films both in the topological phase (x < 0.16, inverted band structure, zero band gap) and the trivial state (x > 0.16, normal band structure) has been studied. We show that both the positive photoresponse in films with x < 0.16 and the negative photoconductivity in samples with x > 0.16 have no low-energy threshold. The observed non-threshold positive photoconductivity is discussed in terms of a qualitative model that takes into account a 3D potential well and 2D topological Dirac states coexisting in a smooth topological heterojunction.

18.
Cell Calcium ; 73: 55-69, 2018 07.
Article in English | MEDLINE | ID: mdl-29684785

ABSTRACT

Rod cell membranes contain cholesterol-rich detergent-resistant membrane (DRM) rafts, which accumulate visual cascade proteins as well as proteins involved in regulation of phototransduction such as rhodopsin kinase and guanylate cyclases. Caveolin-1 is the major integral component of DRMs, possessing scaffolding and regulatory activities towards various signaling proteins. In this study, photoreceptor Ca2+-binding proteins recoverin, NCS1, GCAP1, and GCAP2, belonging to neuronal calcium sensor (NCS) family, were recognized as novel caveolin-1 interacting partners. All four NCS proteins co-fractionate with caveolin-1 in DRMs, isolated from illuminated bovine rod outer segments. According to pull-down assay, surface plasmon resonance spectroscopy and isothermal titration calorimetry data, they are capable of high-affinity binding to either N-terminal fragment of caveolin-1 (1-101), or its short scaffolding domain (81-101) via a novel structural site. In recoverin this site is localized in C-terminal domain in proximity to the third EF-hand motif and composed of aromatic amino acids conserved among NCS proteins. Remarkably, the binding of NCS proteins to caveolin-1 occurs only in the absence of calcium, which is in agreement with higher accessibility of the caveolin-1 binding site in their Ca2+-free forms. Consistently, the presence of caveolin-1 produces no effect on regulatory activity of Ca2+-saturated recoverin or NCS1 towards rhodopsin kinase, but upregulates GCAP2, which potentiates guanylate cyclase activity being in Ca2+-free conformation. In addition, the interaction with caveolin-1 decreases cooperativity and augments affinity of Ca2 + binding to recoverin apparently by facilitating exposure of its myristoyl group. We suggest that at low calcium NCS proteins are compartmentalized in photoreceptor rafts via binding to caveolin-1, which may enhance their activity or ensure their faster responses on Ca2+-signals thereby maintaining efficient phototransduction recovery and light adaptation.


Subject(s)
Caveolin 1/metabolism , Detergents/pharmacology , Membrane Microdomains/metabolism , Neuronal Calcium-Sensor Proteins/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Amino Acid Sequence , Animals , Calcium/metabolism , Calcium/pharmacology , Cattle , Caveolin 1/genetics , Detergents/metabolism , Membrane Microdomains/drug effects , Neuronal Calcium-Sensor Proteins/genetics , Photoreceptor Cells, Vertebrate/drug effects , Protein Binding/physiology , Protein Structure, Secondary , Rod Cell Outer Segment/metabolism
19.
Front Mol Neurosci ; 11: 474, 2018.
Article in English | MEDLINE | ID: mdl-30666186

ABSTRACT

The excessive light illumination of mammalian retina is known to induce oxidative stress and photoreceptor cell death linked to progression of age-related macular degeneration. The photochemical damage of photoreceptors is suggested to occur via two apoptotic pathways that involve either excessive rhodopsin activation or constitutive phototransduction, depending on the light intensity. Both pathways are dramatically activated in the absence of rhodopsin desensitization by GRK1. Previously, we have shown that moderate illumination (halogen lamp, 1,500 lx, 1-5 h) of mammalian eyes provokes disulfide dimerization of recoverin, a calcium-dependent regulator of GRK1. Here, we demonstrate under in vivo conditions that both moderate long-term (metal halide lamp, 2,500 lx, 14 h, rat model) and intense short-term (halogen lamp, 30,000 lx for 3 h, rabbit model) illumination of the mammalian retina are accompanied by accumulation of disulfide dimer of recoverin. Furthermore, in the second case we reveal alternatively oxidized derivatives of the protein, apparently including its monomer with sulfinic group. Histological data indicate that thiol oxidation of recoverin precedes apoptosis of photoreceptors. Both disulfide dimer and oxidized monomer (or oxidation mimicking C39D mutant) of recoverin exhibit lowered α-helical content and thermal stability of their apo-forms, as well as increased Ca2+ affinity. Meanwhile, the oxidized monomer and C39D mutant of recoverin demonstrate impaired ability to bind photoreceptor membranes and regulate GRK1, whereas disulfide dimer exhibits notably improved membrane binding and GRK1 inhibition in absence of Ca2+. The latter effect is expected to slow down rhodopsin desensitization in the light, thereby favoring support of the light-induced oxidative stress, ultimately leading to photoreceptor apoptosis. Overall, the intensity and duration of illumination of the retina affect thiol oxidation of recoverin likely contributing to propagation of the oxidative stress and photoreceptor damage.

20.
Biochim Biophys Acta ; 1854(10 Pt A): 1325-37, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26001899

ABSTRACT

Neuronal responses to Ca2+-signals are provided by EF-hand-type neuronal Ca2+-sensor (NCS) proteins, which have similar core domains containing Ca2+-binding and target-recognizing sites. NCS proteins vary in functional specificity, probably depending on the structure and conformation of their non-conserved C-terminal segments. Here, we investigated the role of the C-terminal segment in guanylate cyclase activating protein-2, GCAP2, an NCS protein controlling the Ca2+-dependent regulation of photoreceptor guanylate cyclases. We obtained two chimeric proteins by exchanging C-terminal segments between GCAP2 and its photoreceptor homolog recoverin, a Ca2+-sensor controlling rhodopsin kinase (RK) activity. The exchange affected neither the structural integrity of GCAP2 and recoverin nor the Ca2+-sensitivity of GCAP2. Intrinsic fluorescence, circular dichroism, biochemical studies and hydrophobic dye probing revealed Ca2+-dependent conformational transition of the C-terminal segment of GCAP2 occurring in the molecular environment of both proteins. In Ca2+-GCAP2, the C-terminal segment was constrained and its replacement provided the protein with approximately two-fold inhibitory activity towards RK, suggesting that the segment contributes to specific target recognition by interfering with RK-binding. Upon Ca2+-release, it became less constrained and more available for phosphorylation by cyclic nucleotide-dependent protein kinase. The transition from the Ca2+-bound to the apo-state exposed hydrophobic sites in GCAP2, and was associated with its activating function without affecting its dimerization. The released C-terminal segment participated further in photoreceptor membrane binding making it sensitive to phosphorylation. Thus, the C-terminal segment in GCAP2 confers target selectivity, facilitates membrane binding and provides sensitivity of the membrane localization of the protein to phosphorylation by signaling kinases.


Subject(s)
G-Protein-Coupled Receptor Kinase 1/metabolism , Guanylate Cyclase-Activating Proteins/metabolism , Guanylate Cyclase/metabolism , Recombinant Fusion Proteins/metabolism , Recoverin/metabolism , Rod Cell Outer Segment/metabolism , Amino Acid Sequence , Animals , Binding Sites , Calcium/metabolism , Calcium Signaling , Cattle , G-Protein-Coupled Receptor Kinase 1/genetics , Gene Expression Regulation , Guanylate Cyclase/genetics , Guanylate Cyclase-Activating Proteins/chemistry , Guanylate Cyclase-Activating Proteins/genetics , Hydrophobic and Hydrophilic Interactions , Molecular Sequence Data , Phosphorylation , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recoverin/chemistry , Recoverin/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...