Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 11(5)2023 May 21.
Article in English | MEDLINE | ID: mdl-37243111

ABSTRACT

Understanding the immunological mechanisms of protection and the viral proteins involved in the induction of a protective immune response to the African swine fever virus (ASFV) is still limited. In the last years, the CD2v protein (gp110-140) of the ASFV has been proven to be a serotype-specific protein. Current work is devoted to the investigation of the possibility of creating protection against virulent ASFV strain Mozambique-78 (seroimmunotype III) in pigs previously vaccinated with vaccine strain FK-32/135 (seroimmunotype IV) and then immunized with the pUBB76A_CD2v plasmid, containing a chimeric nucleotide sequence from the CD2v protein gene (EP402R, nucleotides from 49 to 651) from the MK-200 strain (seroimmunotype III). Vaccination with the ASFV vaccine strain FK-32/135 protects pigs from the disease caused by the strain with homologous seroimmunotype-France-32 (seroimmunotype IV). Our attempt to create balanced protection against virulent strain Mozambique-78 (seroimmunotype III) by induction of both humoral factors of immunity (by vaccination with strain FK-32/135 of seroimmunotype IV) and serotype-specific cellular immunity (by immunization with the plasmid pUBB76A_CD2v of seroimmunotype III) was unsuccessful.

2.
PLoS One ; 17(7): e0270641, 2022.
Article in English | MEDLINE | ID: mdl-35797376

ABSTRACT

African swine fever (ASF) is an infectious disease of domestic and wild pigs of all breeds and ages, with the acute form of the disease being characterized by high fever, hemorrhages in the reticuloendothelial system and a high mortality rate. Registered safe and efficacious ASF vaccines are not available. The development of experimental ASF vaccines, particularly live attenuated, have considerably intensified in the last years. There is much variability in experimental approaches undertaken by laboratories attempting to develop first generation vaccines, rendering it difficult to interpret and make comparisons across trials. ASF virus (ASFV) genotyping does not fully correlate with available cross-protection data and may be of limited value in predicting cross-protective vaccine efficacy. Recently, ASFV strains were assigned to a respective nine groups by seroimmunotype (from I to IX): in vivo the grouping is based on results of cross protection of pigs survived after their infection with a virulent strain (bioassay), while in vitro this grouping is based on hemadsorption inhibition assay (HADIA) data. Here we demonstrate the antigenic and protective properties of two attenuated ASFV strains MK200 and FK-32/135. Pronounced differences in the HADIA and in immunological test in animals allow us to consider them and the corresponding reference virulent strains of the ASFV of Mozambique-78 (seroimmunotype III, genotype V) and France-32 (seroimmunotype IV, genotype I) as useful models for studying the mechanisms of protective immunity and evaluation of the candidate vaccines.


Subject(s)
African Swine Fever Virus , African Swine Fever , Viral Vaccines , Animals , France , Genotype , Macrophages , Swine
3.
PLoS One ; 17(5): e0265819, 2022.
Article in English | MEDLINE | ID: mdl-35551531

ABSTRACT

The spread of African swine fever (ASF) in Eurasia has forced a return to the development of live vaccines based on naturally or experimentally attenuated strains of the virus including those resulting from genetic manipulations. This process includes evaluation of the immunomodulating properties of the vaccines. In this report we provide our assessment of two tests for immunobiological evaluation of a candidate live vaccine against ASF from the attenuated ASF virus (ASFV) strain KK-202: (i) investigation of the effect of the attenuated ASFV strain KK-202 on the protectiveness of the vaccine ASFV strain FK-32/135 and a vaccine against classical swine fever (CSF) from the strain LK-VNIIVViM; (ii) determination of the phagocytic activity of blood neutrophils in pigs inoculated with ASFV strains differing in virulence. A simultaneous or sequential inoculation of attenuated strain KK-202 (seroimmunotype II) and vaccine strain FK-32/135 (seroimmunotype IV) into pigs resulted in the loss of protection against the virulent strain France-32 (seroimmunotype IV). Following the simultaneous or sequential inoculations of the ASFV strain KK-202 and the CSF virus (CSFV) vaccine produced from the strain LK-VNIIVViM, the neutralizing antibody titers against the CSFV observed in the experimental groups (after vaccination and after the challenge infection with the virulent CSFV strain Shimen) were not different from those found in animals of the control group. The phagocytic activity of blood neutrophils was shown to increase from 30% in the norm to 50%-94% depending on the virulence of the ASFV strains inoculated into pigs. The results of this work demonstrate the ability of the attenuated ASFV strains to modulate the development of the cellular link of protective immunity without negative impact on the humoral immune response. The informative value of the described immunobiological tests in vivo and in vitro seems to be a more preferable alternative in comparison to the commonly used in vitro tests, which do not always correlate with the development of protection against ASF.


Subject(s)
African Swine Fever Virus , African Swine Fever , Classical Swine Fever , Viral Vaccines , Animals , Swine , Vaccines, Attenuated , Viral Proteins/genetics , Virus Replication
4.
Pathogens ; 9(4)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32283790

ABSTRACT

This article summarizes the study results on the generation of attenuated strains of African swine fever virus (ASFV) of seroimmunotypes I-VIII and the creation of live vaccines for temporary protection of pigs during a period of epizootics in the surveillance zone (a zone adjacent to the area of outbreak). These studies were initiated at the Federal Research Center for Virology and Microbiology (FRCVM, formerly VNIIVViM) at the time of introduction of the pathogen to the Iberian Peninsula in the middle of the 20th century. The developed experimental vaccines against ASFV seroimmunotypes I-V provided protection against virulent strains of homologous seroimmunotypes by day 14 after vaccination, lasting at least four months.

SELECTION OF CITATIONS
SEARCH DETAIL
...