Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 20(5)2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30871086

ABSTRACT

Sirtuins (SIRT1-7) are NAD⁺-dependent protein deacetylases/ADP ribosyltransferases with important roles in chromatin silencing, cell cycle regulation, cellular differentiation, cellular stress response, metabolism and aging. Sirtuins are components of the epigenetic machinery, which is disturbed in Alzheimer's disease (AD), contributing to AD pathogenesis. There is an association between the SIRT2-C/T genotype (rs10410544) (50.92%) and AD susceptibility in the APOEε4-negative population (SIRT2-C/C, 34.72%; SIRT2-T/T 14.36%). The integration of SIRT2 and APOE variants in bigenic clusters yields 18 haplotypes. The 5 most frequent bigenic genotypes in AD are 33CT (27.81%), 33CC (21.36%), 34CT (15.29%), 34CC (9.76%) and 33TT (7.18%). There is an accumulation of APOE-3/4 and APOE-4/4 carriers in SIRT2-T/T > SIRT2-C/T > SIRT2-C/C carriers, and also of SIRT2-T/T and SIRT2-C/T carriers in patients who harbor the APOE-4/4 genotype. SIRT2 variants influence biochemical, hematological, metabolic and cardiovascular phenotypes, and modestly affect the pharmacoepigenetic outcome in AD. SIRT2-C/T carriers are the best responders, SIRT2-T/T carriers show an intermediate pattern, and SIRT2-C/C carriers are the worst responders to a multifactorial treatment. In APOE-SIRT2 bigenic clusters, 33CC carriers respond better than 33TT and 34CT carriers, whereas 24CC and 44CC carriers behave as the worst responders. CYP2D6 extensive metabolizers (EM) are the best responders, poor metabolizers (PM) are the worst responders, and ultra-rapid metabolizers (UM) tend to be better responders that intermediate metabolizers (IM). In association with CYP2D6 genophenotypes, SIRT2-C/T-EMs are the best responders. Some Sirtuin modulators might be potential candidates for AD treatment.


Subject(s)
Alzheimer Disease/genetics , Sirtuin 2/genetics , Sirtuins/genetics , Aged , Aged, 80 and over , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Cytochrome P-450 CYP2D6/genetics , Female , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genotype , Heterozygote , Humans , Male , Middle Aged , Pharmacogenetics/methods , Phenotype
2.
FEBS J ; 285(19): 3576-3590, 2018 10.
Article in English | MEDLINE | ID: mdl-29323772

ABSTRACT

The transcription factor Nrf2 (nuclear factor-erythroid 2 p45-related factor 2) functions at the interface of cellular redox and intermediary metabolism. Nrf2 target genes encode antioxidant enzymes, and proteins involved in xenobiotic detoxification, repair and removal of damaged proteins and organelles, inflammation, and mitochondrial bioenergetics. The function of Nrf2 is altered in many neurodegenerative disorders, such as Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and Friedreich's ataxia. Nrf2 activation mitigates multiple pathogenic processes involved in these neurodegenerative disorders through upregulation of antioxidant defenses, inhibition of inflammation, improvement of mitochondrial function, and maintenance of protein homeostasis. Small molecule pharmacological activators of Nrf2 have shown protective effects in numerous animal models of neurodegenerative diseases, and in cultures of human cells expressing mutant proteins. Targeting Nrf2 signaling may provide a therapeutic option to delay onset, slow progression, and ameliorate symptoms of neurodegenerative disorders.


Subject(s)
Molecular Targeted Therapy , NF-E2-Related Factor 2/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/prevention & control , Animals , Humans , NF-E2-Related Factor 2/antagonists & inhibitors , Oxidative Stress , Signal Transduction
3.
Proc Natl Acad Sci U S A ; 114(23): E4676-E4685, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28533375

ABSTRACT

The activity of the transcription factor nuclear factor-erythroid 2 p45-derived factor 2 (NRF2) is orchestrated and amplified through enhanced transcription of antioxidant and antiinflammatory target genes. The present study has characterized a triazole-containing inducer of NRF2 and elucidated the mechanism by which this molecule activates NRF2 signaling. In a highly selective manner, the compound covalently modifies a critical stress-sensor cysteine (C151) of the E3 ligase substrate adaptor protein Kelch-like ECH-associated protein 1 (KEAP1), the primary negative regulator of NRF2. We further used this inducer to probe the functional consequences of selective activation of NRF2 signaling in Huntington's disease (HD) mouse and human model systems. Surprisingly, we discovered a muted NRF2 activation response in human HD neural stem cells, which was restored by genetic correction of the disease-causing mutation. In contrast, selective activation of NRF2 signaling potently repressed the release of the proinflammatory cytokine IL-6 in primary mouse HD and WT microglia and astrocytes. Moreover, in primary monocytes from HD patients and healthy subjects, NRF2 induction repressed expression of the proinflammatory cytokines IL-1, IL-6, IL-8, and TNFα. Together, our results demonstrate a multifaceted protective potential of NRF2 signaling in key cell types relevant to HD pathology.


Subject(s)
Huntington Disease/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Adult , Aged , Animals , Brain/drug effects , Brain/metabolism , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Female , HEK293 Cells , Humans , Huntington Disease/genetics , Kelch-Like ECH-Associated Protein 1/chemistry , MPTP Poisoning/metabolism , MPTP Poisoning/prevention & control , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Middle Aged , NF-E2-Related Factor 2/chemistry , Neural Stem Cells/metabolism , Neuroprotective Agents/pharmacology , Protein Conformation/drug effects , Rats , Signal Transduction
5.
J Huntingtons Dis ; 5(4): 347-355, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27983565

ABSTRACT

BACKGROUND: Modulation of gene transcription by HDAC inhibitors has been shown repeatedly to be neuroprotective in cellular, invertebrate, and rodent models of Huntington's disease (HD). It has been difficult to translate these treatments to the clinic, however, because existing compounds have limited potency or brain bioavailability. OBJECTIVE: In the present study, we assessed the therapeutic potential of LBH589, an orally bioavailable hydroxamic acid-derived nonselective HDAC inhibitor in mouse models of HD. METHOD: The efficacy of LBH589 is tested in two HD mouse models using various biochemical, behavioral and neuropathological outcome measures. RESULTS: We show that LBH589 crosses the blood brain barrier; induces histone hyperacetylation and prevents striatal neuronal shrinkage in R6/2 HD mice. In full-length knock-in HD mice LBH589-treatment improves motor performance and reduces neuronal atrophy. CONCLUSIONS: Our efficacious results of LBH589 in fragment and full-length mouse models of HD suggest that LBH589 is a promising candidate for clinical assessment in HD patients and provides confirmation that non-selective HDAC inhibitors can be viable clinical candidates.


Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Huntington Disease/drug therapy , Hydroxamic Acids/pharmacology , Indoles/pharmacology , Neuroprotective Agents/pharmacology , Animals , Atrophy/drug therapy , Atrophy/metabolism , Atrophy/pathology , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Corpus Striatum/pathology , Disease Models, Animal , Female , Gene Knock-In Techniques , Histone Deacetylase Inhibitors/pharmacokinetics , Histones/metabolism , Huntington Disease/pathology , Huntington Disease/physiopathology , Hydroxamic Acids/pharmacokinetics , Indoles/pharmacokinetics , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Motor Activity/drug effects , Neurons/drug effects , Neurons/pathology , Neurons/physiology , Neuroprotective Agents/pharmacokinetics , Panobinostat
6.
Cell Chem Biol ; 23(7): 849-861, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27427231

ABSTRACT

There are currently no disease-modifying therapies for the neurodegenerative disorder Huntington's disease (HD). This study identified novel thiazole-containing inhibitors of the deacetylase sirtuin-2 (SIRT2) with neuroprotective activity in ex vivo brain slice and Drosophila models of HD. A systems biology approach revealed an additional SIRT2-independent property of the lead-compound, MIND4, as an inducer of cytoprotective NRF2 (nuclear factor-erythroid 2 p45-derived factor 2) activity. Structure-activity relationship studies further identified a potent NRF2 activator (MIND4-17) lacking SIRT2 inhibitory activity. MIND compounds induced NRF2 activation responses in neuronal and non-neuronal cells and reduced production of reactive oxygen species and nitrogen intermediates. These drug-like thiazole-containing compounds represent an exciting opportunity for development of multi-targeted agents with potentially synergistic therapeutic benefits in HD and related disorders.


Subject(s)
Disease Models, Animal , Huntington Disease/drug therapy , NF-E2-Related Factor 2/antagonists & inhibitors , Neuroprotective Agents/pharmacology , Sirtuin 2/antagonists & inhibitors , Thiazoles/pharmacology , Thiazoles/therapeutic use , Animals , Cell Line , Dose-Response Relationship, Drug , Drosophila , Huntington Disease/metabolism , NF-E2-Related Factor 2/metabolism , Neuroprotective Agents/chemistry , Neuroprotective Agents/therapeutic use , Rats , Sirtuin 2/deficiency , Sirtuin 2/metabolism , Structure-Activity Relationship , Thiazoles/chemistry
7.
ACS Med Chem Lett ; 6(5): 607-11, 2015 May 14.
Article in English | MEDLINE | ID: mdl-26005542

ABSTRACT

Inhibitors of sirtuin-2 (SIRT2) deacetylase have been shown to be protective in various models of Huntington's disease (HD) by decreasing polyglutamine aggregation, a hallmark of HD pathology. The present study was directed at optimizing the potency of SIRT2 inhibitors containing the 3-(benzylsulfonamido)benzamide scaffold and improving their metabolic stability. Molecular modeling and docking studies revealed an unfavorable role of the sulfonamide moiety for SIRT2 binding. This prompted us to replace the sulfonamide with thioether, sulfoxide, or sulfone groups. The thioether analogues were the most potent SIRT2 inhibitors with a two- to three-fold increase in potency relative to their corresponding sulfonamide analogues. The newly synthesized compounds also demonstrated higher SIRT2 selectivity over SIRT1 and SIRT3. Two thioether-derived compounds (17 and 18) increased α-tubulin acetylation in a dose-dependent manner in at least one neuronal cell line, and 18 was found to inhibit polyglutamine aggregation in PC12 cells.

8.
PLoS One ; 10(1): e0116919, 2015.
Article in English | MEDLINE | ID: mdl-25608039

ABSTRACT

Sirtuin deacetylases regulate diverse cellular pathways and influence disease processes. Our previous studies identified the brain-enriched sirtuin-2 (SIRT2) deacetylase as a potential drug target to counteract neurodegeneration. In the present study, we characterize SIRT2 inhibition activity of the brain-permeable compound AK7 and examine the efficacy of this small molecule in models of Parkinson's disease, amyotrophic lateral sclerosis and cerebral ischemia. Our results demonstrate that AK7 is neuroprotective in models of Parkinson's disease; it ameliorates alpha-synuclein toxicity in vitro and prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopamine depletion and dopaminergic neuron loss in vivo. The compound does not show beneficial effects in mouse models of amyotrophic lateral sclerosis and cerebral ischemia. These findings underscore the specificity of protective effects observed here in models of Parkinson's disease, and previously in Huntington's disease, and support the development of SIRT2 inhibitors as potential therapeutics for the two neurodegenerative diseases.


Subject(s)
Amyotrophic Lateral Sclerosis/physiopathology , Benzamides/administration & dosage , Brain Ischemia/physiopathology , Neuroprotective Agents/administration & dosage , Parkinson Disease/prevention & control , Sirtuin 2/antagonists & inhibitors , Small Molecule Libraries/administration & dosage , Sulfonamides/administration & dosage , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Animals , Benzamides/pharmacology , Cell Line , Disease Models, Animal , Humans , Male , Mice , Neuroprotective Agents/pharmacology , Parkinson Disease/metabolism , Small Molecule Libraries/pharmacology , Sulfonamides/pharmacology , alpha-Synuclein/metabolism
9.
Eur J Med Chem ; 76: 414-26, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24602787

ABSTRACT

Inhibitors of sirtuin-2 deacetylase (SIRT2) have been shown to be protective in various models of Huntington's disease (HD) by decreasing polyglutamine aggregation, a hallmark of HD pathology. The present study was directed at optimizing the potency of SIRT2 inhibitors containing the neuroprotective sulfobenzoic acid scaffold and improving their pharmacology. To achieve that goal, 176 analogues were designed, synthesized, and tested in deacetylation assays against the activities of major human sirtuins SIRT1-3. This screen yielded 15 compounds with enhanced potency for SIRT2 inhibition and 11 compounds having SIRT2 inhibition equal to reference compound AK-1. The newly synthesized compounds also demonstrated higher SIRT2 selectivity over SIRT1 and SIRT3. These candidates were subjected to a dose-response bioactivity assay, measuring an increase in α-tubulin K40 acetylation in two neuronal cell lines, which yielded five compounds bioactive in both cell lines and eight compounds bioactive in at least one of the cell lines tested. These bioactive compounds were subsequently tested in a tertiary polyglutamine aggregation assay, which identified five inhibitors. ADME properties of the bioactive SIRT2 inhibitors were assessed, which revealed a significant improvement of the pharmacological properties of the new entities, reaching closer to the goal of a clinically-viable candidate.


Subject(s)
Benzamides/pharmacology , Neuroprotective Agents/pharmacology , Sirtuin 2/antagonists & inhibitors , Acetylation , Benzamides/chemistry , Magnetic Resonance Spectroscopy , Mass Spectrometry , Neuroprotective Agents/chemistry , Sirtuin 2/metabolism , Structure-Activity Relationship
10.
Cell Rep ; 2(6): 1492-7, 2012 Dec 27.
Article in English | MEDLINE | ID: mdl-23200855

ABSTRACT

Inhibition of sirtuin 2 (SIRT2) deacetylase mediates protective effects in cell and invertebrate models of Parkinson's disease and Huntington's disease (HD). Here we report the in vivo efficacy of a brain-permeable SIRT2 inhibitor in two genetic mouse models of HD. Compound treatment resulted in improved motor function, extended survival, and reduced brain atrophy and is associated with marked reduction of aggregated mutant huntingtin, a hallmark of HD pathology. Our results provide preclinical validation of SIRT2 inhibition as a potential therapeutic target for HD and support the further development of SIRT2 inhibitors for testing in humans.


Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Huntington Disease/drug therapy , Neuroprotective Agents/pharmacology , Sirtuin 2/antagonists & inhibitors , Animals , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Huntington Disease/enzymology , Huntington Disease/genetics , Male , Mice , Mice, Mutant Strains , Sirtuin 2/genetics , Sirtuin 2/metabolism
11.
Front Pharmacol ; 3: 82, 2012.
Article in English | MEDLINE | ID: mdl-22563317

ABSTRACT

Sirtuin proteins are conserved regulators of aging that have recently emerged as important modifiers of several diseases which commonly occur later in life such as cancer, diabetes, cardiovascular, and neurodegenerative diseases. In mammals, there are seven sirtuins (SIRT1-7), which display diversity in subcellular localization and function. SIRT1 has received much of attention due to its possible impact on longevity, while important biological and therapeutic roles of other sirtuins have been underestimated and just recently recognized. Here we focus on SIRT2, a member of the sirtuin family, and discuss its role in cellular and tissue-specific functions. This review summarizes the main scientific advances on SIRT2 protein biology and explores its potential as a therapeutic target for treatment of age-related disorders.

13.
Front Pharmacol ; 3: 42, 2012.
Article in English | MEDLINE | ID: mdl-22416232

ABSTRACT

Tauopathies including tau-associated Frontotemporal dementia (FTD) and Alzheimer's disease are characterized pathologically by the formation of tau-containing neurofibrillary aggregates and neuronal loss, which contribute to cognitive decline. There are currently no effective treatments to prevent or slow this neural systems failure. The rTg4510 mouse model, which expresses a mutant form of the tau protein associated with FTD with Parkinsonism-17, undergoes dramatic hippocampal and cortical neuronal loss making it an ideal model to study treatments for FTD-related neuronal loss. Sirtuins are a family of proteins involved in cell survival that have the potential to modulate neuronal loss in neurodegenerative disorders. Here we tested the hypothesis that sirtuin 2 (SIRT2) inhibition would be non-toxic and prevent neurodegeneration in rTg4510 brain. In this study we delivered SIRT2 inhibitor AK1 directly to the hippocampus with an osmotic minipump and confirmed that it reached the target region both with histological assessment of delivery of a dye and with a pharmacodynamic marker, ABCA1 transcription, which was upregulated with AK1 treatment. AK1 treatment was found to be safe in wild-type mice and in the rTg4510 mouse model, and further, it provided some neuroprotection in the rTg4510 hippocampal circuitry. This study provides proof-of-concept for therapeutic benefits of SIRT2 inhibitors in both tau-associated FTD and Alzheimer's disease, and suggests that development of potent, brain permeable SIRT2 inhibitors is warranted.

14.
Bioorg Med Chem Lett ; 22(8): 2789-93, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22446090

ABSTRACT

Inhibition of sirtuin 2 (SIRT2) is known to be protective against the toxicity of disease proteins in Parkinson's and Huntington's models of neurodegeneration. Previously, we developed SIRT2 inhibitors based on the 3-(N-arylsulfamoyl)benzamide scaffold, including3-(N-(4-bromophenyl)sulfamoyl)-N-(4-bromophenyl)benzamide(C2-8, 1a), which demonstrated neuroprotective effects in a Huntington's mouse model, but had low potency of SIRT2 inhibition. Here we report that N-methylation of 1a greatly increases its potency and results in excellent selectivity for SIRT2 over SIRT1 and SIRT3 isoforms. Structure-activity relationships observed for 1a analogs and docking simulation data suggest that the para-substituted amido moiety of these compounds could occupy two potential hydrophobic binding pockets in SIRT2. These results provide a direction for the design of potent drug-like SIRT2 inhibitors.


Subject(s)
Benzamides/chemistry , Benzamides/pharmacology , Sirtuin 2/antagonists & inhibitors , Acylation , Animals , Binding Sites , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , Mice , Molecular Conformation , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/pharmacology , Protein Isoforms , Sirtuin 1/chemistry , Sirtuin 3/chemistry , Structure-Activity Relationship , Sulfones/chemistry , Sulfones/pharmacology
15.
Hum Mol Genet ; 20(20): 3986-96, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21791548

ABSTRACT

Sirtuin 2 (SIRT2) is one of seven known mammalian protein deacetylases homologous to the yeast master lifespan regulator Sir2. In recent years, the sirtuin protein deacetylases have emerged as candidate therapeutic targets for many human diseases, including metabolic and age-dependent neurological disorders. In non-neuronal cells, SIRT2 has been shown to function as a tubulin deacetylase and a key regulator of cell division and differentiation. However, the distribution and function of the SIRT2 microtubule (MT) deacetylase in differentiated, postmitotic neurons remain largely unknown. Here, we show abundant and preferential expression of specific isoforms of SIRT2 in the mammalian central nervous system and find that a previously uncharacterized form, SIRT2.3, exhibits age-dependent accumulation in the mouse brain and spinal cord. Further, our studies reveal that focal areas of endogenous SIRT2 expression correlate with reduced α-tubulin acetylation in primary mouse cortical neurons and suggest that the brain-enriched species of SIRT2 may function as the predominant MT deacetylases in mature neurons. Recent reports have demonstrated an association between impaired tubulin acetyltransferase activity and neurodegenerative disease; viewed in this light, our results showing age-dependent accumulation of the SIRT2 neuronal MT deacetylase in wild-type mice suggest a functional link between tubulin acetylation patterns and the aging brain.


Subject(s)
Aging/metabolism , Central Nervous System/metabolism , Microtubules/metabolism , Neurons/metabolism , Sirtuin 2/metabolism , Animals , Cell Line, Tumor , Female , Gene Expression Regulation, Developmental , Gene Order , Humans , Male , Mice , Mice, Inbred C57BL , Microtubules/genetics , Protein Isoforms/metabolism , Sirtuin 2/genetics
16.
ACS Chem Biol ; 6(6): 540-6, 2011 Jun 17.
Article in English | MEDLINE | ID: mdl-21370928

ABSTRACT

Sirtuin 2 (SIRT2) deacetylase-dependent inhibition mediates neuroprotective reduction of cholesterol biosynthesis in an in vitro Huntington's disease model. This study sought to identify the first brain-permeable SIRT2 inhibitor and to characterize its cholesterol-reducing properties in neuronal models. Using biochemical sirtuin deacetylation assays, we screened a brain-permeable in silico compound library, yielding 3-(1-azepanylsulfonyl)-N-(3-bromphenyl)benzamide as the most potent and selective SIRT2 inhibitor. Pharmacokinetic studies demonstrated brain-permeability but limited metabolic stability of the selected candidate. In accordance with previous observations, this SIRT2 inhibitor stimulated cytoplasmic retention of sterol regulatory element binding protein-2 and subsequent transcriptional downregulation of cholesterol biosynthesis genes, resulting in reduced total cholesterol in primary striatal neurons. Furthermore, the identified inhibitor reduced cholesterol in cultured naïve neuronal cells and brain slices from wild-type mice. The outcome of this study provides a clear opportunity for lead optimization and drug development, targeting metabolic dysfunctions in CNS disorders where abnormal cholesterol homeostasis is implicated.


Subject(s)
Brain/metabolism , Cholesterol/biosynthesis , Enzyme Inhibitors/pharmacology , Neurons/drug effects , Neurons/metabolism , Sirtuin 2/antagonists & inhibitors , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Mice , Models, Neurological , Molecular Structure , Neurons/enzymology , Permeability , Sirtuin 2/metabolism , Small Molecule Libraries , Stereoisomerism , Structure-Activity Relationship , Tumor Cells, Cultured
17.
Int J Biochem Cell Biol ; 43(1): 20-4, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21056115

ABSTRACT

Huntington's disease is an autosomal dominant genetic neurodegenerative disorder, which is characterized by progressive motor dysfunction, emotional disturbances, dementia, and weight loss. The disease is caused by pathological CAG-triplet repeat extension(s), encoding polyglutamines, within the gene product, huntingtin. Huntingtin is ubiquitously expressed through the body and is a protein of uncertain molecular function(s). Mutant huntingtin, containing pathologically extended polyglutamines causes the earliest and most dramatic neuropathologic changes in the neostriatum and cerebral cortex. Extended polyglutamines confer structural conformational changes to huntingtin, which gains novel properties, resulting in aberrant interactions with multiple cellular components. The diverse and variable aberrations mediated by mutant huntingtin perturb many cellular functions essential for neuronal homeostasis and underlie pleiotropic mechanisms of Huntington's disease pathogenesis. The only approved drug for Huntington's disease is a symptomatic treatment, tetrabenazine; thus, novel neuroprotective strategies, slowing, blocking and possibly reversing disease progression, are vital for developing effective therapies.


Subject(s)
Cerebral Cortex/metabolism , Huntington Disease/genetics , Huntington Disease/metabolism , Neostriatum/metabolism , Nerve Tissue Proteins , Nuclear Proteins , Adrenergic Uptake Inhibitors/therapeutic use , Animals , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Disease Models, Animal , Humans , Huntingtin Protein , Huntington Disease/pathology , Huntington Disease/physiopathology , Huntington Disease/therapy , Mice , Mutation , Neostriatum/pathology , Neostriatum/physiopathology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Peptides/metabolism , Protein Conformation , Tetrabenazine/therapeutic use , Trinucleotide Repeats/genetics
19.
Proc Natl Acad Sci U S A ; 107(17): 7927-32, 2010 Apr 27.
Article in English | MEDLINE | ID: mdl-20378838

ABSTRACT

Huntington's disease (HD), an incurable neurodegenerative disorder, has a complex pathogenesis including protein aggregation and the dysregulation of neuronal transcription and metabolism. Here, we demonstrate that inhibition of sirtuin 2 (SIRT2) achieves neuroprotection in cellular and invertebrate models of HD. Genetic or pharmacologic inhibition of SIRT2 in a striatal neuron model of HD resulted in gene expression changes including significant down-regulation of RNAs responsible for sterol biosynthesis. Whereas mutant huntingtin fragments increased sterols in neuronal cells, SIRT2 inhibition reduced sterol levels via decreased nuclear trafficking of SREBP-2. Importantly, manipulation of sterol biosynthesis at the transcriptional level mimicked SIRT2 inhibition, demonstrating that the metabolic effects of SIRT2 inhibition are sufficient to diminish mutant huntingtin toxicity. These data identify SIRT2 inhibition as a promising avenue for HD therapy and elucidate a unique mechanism of SIRT2-inhibitor-mediated neuroprotection. Furthermore, the ascertainment of SIRT2's role in regulating cellular metabolism demonstrates a central function shared with other sirtuin proteins.


Subject(s)
Brain/metabolism , Gene Expression Regulation/drug effects , Huntington Disease/prevention & control , Neuroprotective Agents/pharmacology , Sirtuin 2/antagonists & inhibitors , Sterol Regulatory Element Binding Protein 2/metabolism , Sterols/biosynthesis , Analysis of Variance , Animals , Blotting, Western , Caenorhabditis elegans , Drosophila , Gene Expression Profiling , Immunohistochemistry , Mice , Microscopy, Confocal
SELECTION OF CITATIONS
SEARCH DETAIL
...