Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Immunohematology ; 27(2): 58-60, 2011.
Article in English | MEDLINE | ID: mdl-22356520

ABSTRACT

Antibodies to antigens in the Kell blood group system are usually immunoglobulin G, and, notoriously, anti-K, anti-k, and anti-Kp(a) can cause severe hemolytic transfusion reactions, as well as severe hemolytic disease of the fetus and newborn (HDFN). It has been shown that the titer of anti-K does not correlate with the severity of HDFN because, in addition to immune destruction of red blood cells (RBCs), anti-K causes suppression of erythropoiesis in the fetus, which can result in severe anemia. We report a case involving anti-Kp(a) in which one twin was anemic and the other was not. Standard hemagglutination and polymerase chain reaction (PCR)-based tests were used. At delivery, anti-Kp(a) was identified in serum from the mother and twin A, and in the eluate prepared from the baby's RBCs. PCR-based assays showed twin A (boy) was KEL*841T/C (KEL*03/KEL*04), which is predicted to encode Kp(a+b+). Twin B (girl) was KEL*841C/C (KEL*04/KEL*04), which is predicted to encode Kp(a­b+). We describe the first reported case of probable suppression of erythropoiesis attributable to anti-Kp(a). One twin born to a woman whose serum contained anti-Kp(a) experienced HDFN while the other did not. Based on DNA analysis, the predicted blood type of the affected twin was Kp(a+b+) and that of the unaffected twin was Kp(a­b+). The laboratory findings and clinical course of the affected twin were consistent with suppression of erythropoiesis in addition to immune RBC destruction.


Subject(s)
Antibodies/immunology , Blood Group Incompatibility/genetics , Erythroblastosis, Fetal/genetics , Erythrocytes/metabolism , Kell Blood-Group System/metabolism , Adult , Antibodies/blood , Blood Group Incompatibility/complications , Blood Group Incompatibility/immunology , Blood Group Incompatibility/physiopathology , Blood Grouping and Crossmatching , Cytotoxicity, Immunologic , Erythroblastosis, Fetal/etiology , Erythroblastosis, Fetal/immunology , Erythroblastosis, Fetal/physiopathology , Erythrocytes/immunology , Erythrocytes/pathology , Erythropoiesis/genetics , Erythropoiesis/immunology , Female , Fetal Development , Genotype , Humans , Infant , Infant, Newborn , Kell Blood-Group System/genetics , Kell Blood-Group System/immunology , Male , Phenotype , Twins, Dizygotic/genetics
2.
Pediatr Res ; 39(1): 120-6, 1996 Jan.
Article in English | MEDLINE | ID: mdl-8825396

ABSTRACT

Two-week-old rabbit tracheal smooth muscle (TSM) and bronchial smooth muscle (BSM) segments were placed in organ baths, and isometric contractions to substance P (SP) were obtained. In the presence of phosphoramidon (PHOS), a neutral endopeptidase inhibitor, BSM segments were significantly more reactive and sensitive to SP than TSM segments. Neither neostigmine (NEO) nor atropine (ATR) eliminated these regional differences. Airway contractile responses to: 1) Senktide (NK-3 agonist); 2) neurokinin A (NKA, a NK-2 agonist); and 3) Septide (a highly selective NK-1 agonist) were separately obtained. In the presence of PHOS and NEO, Senktide was virtually inactive in both BSM and TSM. In the presence of PHOS, NEO, and ATR, NKA was equipotent in all airway segments; in contrast, the Septide response was significantly more reactive in BSM than in TSM segments. After inhibition of NK-1 activity with GR 82334, a competitive NK-1 receptor antagonist, the regional differences in SP reactivity were greatly diminished. This latter indication of a NK-1 contribution was confirmed using Septide-mediated inactivation of NK-1 receptors whereby the regional differences in airway sensitivity to SP were eliminated. These findings indicate that both endogenous neutral endopeptidase activity as well as NK-1 and NK-2 receptor influences may modulate the contractile responses to SP in immature rabbit airways.


Subject(s)
Bronchi/drug effects , Isometric Contraction/drug effects , Muscle, Smooth/drug effects , Receptors, Neurokinin-1/metabolism , Receptors, Neurokinin-2/metabolism , Substance P/metabolism , Trachea/drug effects , Animals , Atropine/pharmacology , Bronchi/metabolism , Glycopeptides/pharmacology , Muscle, Smooth/metabolism , Neostigmine/pharmacology , Neurokinin A/pharmacology , Peptide Fragments/pharmacology , Pyrrolidonecarboxylic Acid/analogs & derivatives , Rabbits , Substance P/analogs & derivatives , Substance P/pharmacology , Trachea/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...