Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 263(Pt 2): 130295, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382787

ABSTRACT

In this study, a simple novel hybrid mesoporous nanomaterial derived from a metal-organic framework (ZIF-8) and chitosan, which were coated on green bismuth oxide, has been successfully synthesized, characterized, and applied to investigate its dapsone loading-releasing capability in the aqueous media. This suggested nanocomposite showed promise for drug loading from water b using hydrogen bonds, pi-pi, and electrostatic interactions. Structural and morphological analyses were performed on the proposed green synthesized nanocomposite through scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller analysis, and thermogravimetric analysis. Various influencing parameters, including pH, nanocomposite dose, and contact time, were investigated to optimize the dapsone loading process. Utilizing the non-linear optimization methodology, the results show that dapsone-loading efficiency was >85 % for 50 mg.L-1 of dapsone drug. The optimum parameters for achieving maximal loading of dapsone drug were pH = 6.8, hybrid mesosphere dose = 2.6 mg.mL-1, and time = 53 min. Based on the release investigations, the dapsone-loaded nanocomposite was put into phosphate buffer saline, at pH = 7.4 and T = 37 °C, with a maximum efficiency of 93.9 after 24 h.


Subject(s)
Chitosan , Nanocomposites , Chitosan/chemistry , Water/chemistry , Dapsone , Microscopy, Electron, Scanning , Nanocomposites/chemistry , Spectroscopy, Fourier Transform Infrared
2.
Int J Fertil Steril ; 17(2): 140-144, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36906832

ABSTRACT

BACKGROUND: Despite of long-lasting efforts, in more than 50% of cases, the etiology of recurrent spontaneous abortion (RSA) remains unknown. Leukemia inhibitory factor (LIF) has an essential role in the reproductive process, such as modulating inflammatory responses. This study aimed to evaluate the relationship between the LIF gene expression as well as serum levels of inflammatory cytokines and occurrence of RSA in infertile women with a history of RSA. MATERIALS AND METHODS: In this case-control study, the relative gene expression levels of LIF, concentrations of tumor necrosis factor-alpha (TNF-α), and interleukin (IL)-17 were measured in peripheral blood and serum of women with a history of RSA (N=40) compared with non-pregnant and fertile women as the control group (N=40) using quantitative real-time polymerase chain reaction and the enzyme-linked immunosorbent assay, respectively. RESULTS: The mean age of patients and controls was 30.1 ± 4.28 and 30.03 ± 4.23, respectively. Patients had a history of at least 2 and at most 6 abortions. The mRNA levels of LIF were significantly lower in the women with RSA in comparison with the healthy participant (P=0.003). Regarding cytokine levels, no significant difference was seen between the two groups (P≥0.05). There was no correlation - between the LIF mRNA levels and TNF-α and IL-17 serum concentrations. The U-Mann-Whitney test and the Pearson correlation coefficient were applied to comparison variables between groups as well as a correlation between LIF mRNA and cytokine levels in serum. CONCLUSION: Despite a significant reduction in the LIF gene mRNA level in patients with RSA, it was not associated with increases in inflammatory cytokines. Dysfunction in the production of LIF protein may be involved in the onset of RSA disorder.

3.
Cell Tissue Res ; 391(2): 357-373, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36454270

ABSTRACT

Tissue engineering combines suitable cells, engineering methods, and proper biochemical factors to develop functional and biological tissues and repair damaged tissues. In this study, we focused on synthesizing and characterizing a nanocomposite scaffold based on glycerol and azelaic acid (Gl-Az) combined with copper chromite (CuCr2O4) nanoparticles in order to increase the osteogenic differentiation efficiency of human adipose-derived stem cells (hADSCs) on fabricated scaffolds. The degradability and hydrophobicity properties as well as mechanical and thermal behaviors of nanocomposite scaffolds were investigated. Next, the cell toxicity of glycerol, azelaic acid and CuCr2O4 nanoparticles was studied by MTT assay test and acridine orange staining. Finally, the osteogenic differentiation of hADSCs on Gl-Az-CuCr2O4 scaffolds was examined using alkaline phosphatase activity (ALP) and calcium content. The obtained results demonstrated that Gl-Az-1%CuCr2O4 not only showed appropriate mechanical strength, biocompatibility and degradability but also influenced the capability of hADSCs to differentiate into osteogenic lineages. The hADSCs culture in Gl-Az-1%CuCr2O4 showed a significant increase in ALP activity levels and calcium biomineralization after 14 days of osteogenic differentiation. In conclusion, the Gl-Az-1%CuCr2O4 nanocomposite could be used as a biocompatible and degradable scaffold to induce the bone differentiation of hADSCs and it could be a promising scaffold in bone regenerative medicine.


Subject(s)
Mesenchymal Stem Cells , Nanoparticles , Humans , Tissue Engineering/methods , Osteogenesis , Copper/pharmacology , Glycerol , Tissue Scaffolds/chemistry , Calcium , Cell Differentiation , Cells, Cultured , Cell Proliferation
4.
Gene Ther ; 29(12): 680-690, 2022 12.
Article in English | MEDLINE | ID: mdl-34108628

ABSTRACT

Nowadays, nano-compartments are considered as an effective drug delivery system (DDS) for cancer therapy. Targeted delivery of therapeutic agents is an advantageous approach by which cancer cells can be targeted without harming normal cells, and eliminates the negative effects of conventional therapies such as chemotherapy. In this research, a novel zinc-based nanoscale metal-organic framework (Zn-NMOF) coated with folic acid (FA) functionalized chitosan (CS) has been constructed and applied as efficient delivery of LNA (locked nucleic acid)-antisense miR-224 to colon cancer cell lines. LNA-antisense miR-224 as a therapeutic sequence was able to considerably block highly expressed miR-224 and downregulated cancer cell growth. The prepared nano-complex was characterized by analytical devices such as FT-IR, UV-Vis spectrophotometry, DLS, TEM, and XRD. The size range of NMOF-CS-FA-LNA-antisense miR-224 (MCFL224) nano-complex was obtained nearly at 200 nm. The entrapment efficiency of LNA-antisense miR-224 was calculated 72 ± 5% and a significant release profile of LNA-antisense miR-224 was observed at first 6 h (about 50%). Then, in vitro assays were implemented on HCT116 (folic acid receptor-positive colon cancer cell line) and CRL1831 (normal colon cell line) to evaluate the therapeutic efficiency of the MCFL224 nano-complex. In these investigations, decreased cell viability (14.22 ± 0.3% after 72 h treatment), increased apoptotic and autophagy-related genes expression level (BECLIN1: 34-folds, BAX: 36-folds, mTORC1: 10-folds, and Caspase-9: 9-folds more than control), higher cell cycle arrest in sub-G1 phase (19.53% of cells in sub-G1 phase), and more apoptosis analyses (late apoptosis: 67.7%) were evaluated in colon cancer cells treated with MCFL224 nano-complex. Results remarkably indicate the inhibited growth of colon cancer cells and induced cell apoptosis which suggests MCFL224 as a promising nanocomposite for colon cancer therapy.


Subject(s)
Chitosan , Colonic Neoplasms , Metal-Organic Frameworks , MicroRNAs , Nanocomposites , Humans , Spectroscopy, Fourier Transform Infrared , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Folic Acid , MicroRNAs/genetics , Zinc , Cell Line, Tumor
5.
BMC Pharmacol Toxicol ; 22(1): 54, 2021 10 03.
Article in English | MEDLINE | ID: mdl-34600570

ABSTRACT

BACKGROUND: Berberine (BBR) is a plant alkaloid that possesses anti-inflammatory and anti-oxidant effects with low oral bioavailability. In this study, micelle formulation of BBR was investigated to improve therapeutic efficacy and examined its effect on the secretion of inflammatory cytokines in cerebral ischemia in the animal model. MATERIAL AND METHODS: Nano formulation was prepared by thin-film hydration method, and characterized by particle size, zeta potential, morphology, encapsulation efficacy, and drug release in Simulated Gastric Fluid (SGF) and Simulated Intestine Fluid (SIF). Then, Wistar rats were pretreated with the drug (100 mg/kg) and nano-drug (25, 50, 75, 100 mg/kg) for 14 days. Then, on the fourteenth day, stroke induction was accomplished by Bilateral Common Carotid Artery Occlusion (BCCAO); after that, Tumor Necrosis Factor - Alpha (TNF-α), Interleukin - 1 Beta (IL-1ß), and Malondialdehyde (MDA) levels were measured in the supernatant of the whole brain, then the anti-inflammatory effect of BBR formulations was examined. RESULT AND DISCUSSION: Micelles were successfully formed with appropriate characteristics and smaller sizes than 20 nm. The Poly Dispersity Index (PDI), zeta potential, encapsulation efficacy of micelles was 0.227, - 22 mV, 81%, respectively. Also, the stability of nano micelles was higher in SGF as compared to SIF. Our outcomes of TNF-a, IL-1B, and MDA evaluation show a significant ameliorating effect of the Berberine (BBR) and BBR-loaded micelles in pretreated groups. CONCLUSION: Our experimental data show that pretreated groups in different doses (nano BBR 100, 75, 50 mg/kg, and BBR 100 mg/kg) successfully showed decreased levels of the inflammatory factors in cerebral ischemia compared with the stroke group and pretreated group with nano BBR in the dose of 25 mg/kg. Nano BBR formulation with a lower dose can be a better candidate than conventional BBR formulation to reduce oxidative and inflammatory factors in cerebral ischemia. Therefore, BBR-loaded micelle formulation could be a promising protective agent on cerebral ischemia.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Berberine/administration & dosage , Brain Ischemia/drug therapy , Carotid Artery Diseases/drug therapy , Nanoparticles/administration & dosage , Animals , Brain/drug effects , Brain/metabolism , Brain Ischemia/metabolism , Carotid Artery Diseases/metabolism , Disease Models, Animal , Interleukin-1beta/metabolism , Malondialdehyde/metabolism , Micelles , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism
6.
Hum Cell ; 34(2): 310-324, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33090371

ABSTRACT

Polycaprolactone diol is the cornerstone, equipped with polyacrylonitrile and cellulose nanowhiskers (CNWs), of biocompatible and biodegradable polyurethanes (PUs). The solvent casting/particulate leaching technique was employed to contracting foam scaffolds with bimodal sizes from the combination of polyurethane/polyacrylonitrile/cellulose nanowhisker nanocomposites. Sugar and sodium chloride are components used as porogens to develop the leaching method and fabricate the 3D scaffolds. Incorporation of different percentages of cellulose nanowhisker leads to the various efficient structures with biodegradability and biocompatibility properties. All nanocomposites scaffolds, as revealed by MTT assay using mesenchymal stem cell (MSC) lines, were non-cytotoxic. PU/PAN/CNW foam scaffolds were used for osteogenic differentiation of human mesenchymal stem cells (hMSCs). Based on the results, PU/PAN/CNW nanocomposites could not only support osteogenic differentiation but can also enhance the proliferation of hMSCs in three-dimensional synthetic extracellular matrix.


Subject(s)
Acrylic Resins , Biopolymers , Cell Differentiation , Cellulose/analogs & derivatives , Mesenchymal Stem Cells/physiology , Nanocomposites , Osteogenesis , Polyesters , Polyurethanes , Tissue Scaffolds/chemistry , Biocompatible Materials , Biodegradable Plastics , Cell Line , Humans
7.
Iran J Pharm Res ; 19(2): 70-79, 2020.
Article in English | MEDLINE | ID: mdl-33224212

ABSTRACT

In recent years, green synthesis of nanoparticles has attracted a great attention because of medicine and biological applications. In this work, bismuth oxide nanoparticles (Bi2O3 NP) was prepared via green synthesis using mentha pulegium aqueous extract after 24 h at 90°C. The product was characterized by ultraviolet-visible (UV-VIS) spectrophotometer, Fourier transform infrared (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscope (TEM), energy-dispersive X-ray spectroscopy (EDS), and diffuse reflection spectroscopy (DRS). The antibacterial activities of the samples were determined against Salmonella and Escherichia coli (E.Coli) as Gram-negative bacterial and Staphylococcus aureus (S.aureus) as Gram-positive bacterial. The objectives of this study were the green synthesis of bismuth oxide nanoparticles using aqueous extract with a good potential for UV blocking and antibacterial activity. Based on the obtained results, Bi2O3 NPs can have a good candidate for different applications.

8.
Heliyon ; 5(9): e02152, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31517105

ABSTRACT

In recent years, the use of zinc oxide nanoparticles (ZnO NPs) has attracted considerable attention due to its unique properties. In this study, ZnO nanoparticles were synthesized by a simple and repeatable method with thermal decomposition of a zinc-based metal organic framework (Zn-MOF). MOF-5 was prepared by solution (at room temperature) and solvothermal (at 90 °C) methods in dimethylformamide (DMF) as a solvent via the self-assembly of zinc acetate and dehydrate benzene-1,4-dicarboxylate (BDC) as metal ion center and organic bridging ligand respectively without and with tri-ethylamine (TEA) as capping agent. The result products were characterized by Fourier transform infrared (FTIR) for investigation functional groups, X-ray diffraction (XRD) for determination of crystalline structure, scanning electron microscope (SEM) for evaluation of size and morphology, energy-dispersive X-ray spectroscopy (EDS) for determination of chemical composition, and diffuse reflection spectroscopy (DRS) for investigation of Ultraviolet (UV) protective properties. The antibacterial activities of ZnO NPs were studied against Escherichia coli (E. coli).

9.
J Pharm Biomed Anal ; 172: 285-294, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31078065

ABSTRACT

An efficient method based on CysSB/MetSB@MWCNTs as a novel bio structure material was used for determination/separation of nickel and cobalt (Ni and Co) in human samples by ultrasound assisted-dispersive ionic liquid-suspension solid phase micro extraction (USA-DIL-SSPME). In this procedure, CysSB/MetSB@MWCNTs suspended in 1-butyl-2,3-dimethylimidazolium hexafluorophosphate ([BDMIM][PF6]) and mixture dispersed to 10 mL of blood samples at optimized pH by injecting. Then, the Co/Ni (II) was extracted with CysSB/MetSB@MWCNTs without any ligands and settled down in conical tube by IL [Ni/Co→:SMWCNTs]. After back extraction of ions from remaining solution, the concentration of Co/Ni was determined by electro thermal atomic absorption spectrometry (ET-AAS). By optimizing, the linear range, detection limit and enrichment factor of CysSB @MWCNTs were obtained (0.1-3.4 µg L-1; 0.08-3.2 µg L-1), (0.028 µg L-1; 0.022 µg L-1) and (50.2; 48.7) for Ni and Co ions in human biological samples, respectively (RSD<5%). The adsorption capacity of CysSB@MWCNTs for Ni and Co ions was 226.7 mg g-1 and 193.3 mg g-1, respectively which was higher than MetSB@MWCNTs. The standard reference materials (NIST, SRM) and ICP-MS were used for validation of methodology.


Subject(s)
Cobalt/chemistry , Ionic Liquids/chemistry , Nickel/chemistry , Suspensions/chemistry , Adsorption , Humans , Hydrogen-Ion Concentration , Ions/chemistry , Limit of Detection , Liquid Phase Microextraction/methods , Solid Phase Extraction/methods , Spectrophotometry, Atomic/methods , Ultrasonics/methods
10.
J Cell Physiol ; 234(5): 5343-5353, 2019 05.
Article in English | MEDLINE | ID: mdl-30515792

ABSTRACT

Tissue engineering is an interdisciplinary expertise that involves the use of nanoscaffolds for repairing, modifying, and removing tissue defects and formation of new tissues. Mesenchymal stem cells (MSCs) can differentiate into a variety of cell types, and they are attractive candidates for tissue engineering. In the current study, the electrospinning process was used for nanofiber preparation, based on a poly-l-lactic-acid (PLLA) polymer. The surface was treated with O 2 plasma to enhance hydrophilicity, cell attachment, growth, and differentiation potential. The nanoscaffolds were preconditioned with lipopolysaccharide (LPS) to enhance induction of differentiation. The nanoscaffolds were categorized by contact angle measurements and scanning electron microscopy. The MTT assay was used to analyze the rate of growth and proliferation of cells. Osteogenic differentiation of cultured MSCs was evaluated on nanofibers using common osteogenic markers, such as alkaline phosphatase activity, calcium mineral deposition, quantitative real-time polymerase chain reaction, and immunocytochemical analysis. Based on the in vitro results, primed MSCs with LPS on the PLLA nanoscaffold significantly enhanced the proliferation and osteogenesis of MSCs. Also, the combination of LPS and electrospun nanofibers can provide a new and suitable matrix to support stem cells' differentiation for bone tissue engineering.


Subject(s)
Lipopolysaccharides/pharmacology , Mesenchymal Stem Cells/drug effects , Nanofibers , Osteoblasts/drug effects , Osteogenesis/drug effects , Polyesters/chemistry , Tissue Scaffolds , Animals , Biomarkers/metabolism , Cell Culture Techniques , Cell Proliferation/drug effects , Cells, Cultured , Gene Expression Regulation , Mesenchymal Stem Cells/metabolism , Mice , Osteoblasts/metabolism , Osteogenesis/genetics , Signal Transduction , Surface Properties
11.
Iran J Pharm Res ; 17(4): 1164-1171, 2018.
Article in English | MEDLINE | ID: mdl-30568676

ABSTRACT

In the present study, a nanoporous metal organic framework (MOF) based on iron metal and amino terephthalate ligand MIL-101-NH2-Fe has been used as a carrier for loading and in-vitro release of 5-flurouracil (5-FU) anticancer drug. The 5-FU drug loaded MOF was 13 wt % by using thermogravimetric analysis (TGA). The 5-FU release was monitored under physiological condition at 37 °C, pH 7.4 in simulated body fluid (SBF) by using spectrophotometry. The drug demonstrated a slow release profile where 98% of the drug was released in 4 days. Loading of drug was characterized by Fournier transform infrared (FTI-IR) and thermogravimetric analysis (TGA). The crystalline structure was monitored by using X-ray powder diffraction (XRD) and after loading of drug in the MOF, the pattern of samples was remained the same. The morphology and size of samples were showed by using scanning electron microscopy (SEM) and based on the MOF has a length of 500 nm and an average diameter of 200 nm. These structural characterizations were performed to verify the 5-FU drug loading in MIL-101-NH2-Fe. The MOF stability was studied by measuring the iron concentration in the SBF solution with atomic absorption spectroscopy (AAS). The MTT assay method was assessed the ability of this drug delivery system on overcoming MCF-7 breast cancer cells in comparison with the free drug and the carrier alone. Based on the results, this drug loaded nanoparticle could achieve more cell death as compared to the free 5-FU drug.

SELECTION OF CITATIONS
SEARCH DETAIL
...