Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Robot ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252793

ABSTRACT

Soft gastric simulators are in vitro biomimetic modules that can reproduce the antral contraction waves (ACWs). Along with providing information concerning stomach contents, stomach simulators enable experts to evaluate the digestion process of foods and drugs. Traditionally, open-loop control approaches were implemented on stomach simulators to produce ACWs. Constructing a closed-loop control system is essential to improve the simulator's ability to imitate ACWs in additional scenarios and avoid constant tuning. Closed-loop control can enhance stomach simulators in accuracy, responding to various food and drug contents, timing, and unknown disturbances. In this article, a new generation of anatomically realistic soft pneumatic gastric simulators is designed and fabricated. The presented simulator represents the antrum, the lower portion of the stomach where ACWs occur. It is equipped with a real-time feedback system to implement diverse closed-loop controllers on demand. All the details of the physical design, fabrication, and assembly process are discussed. Also, the measures taken for the mechatronics design and sensory system are highlighted in this article. Through several implementation algorithms and techniques, three closed-loop controllers, including model-based and model-free schemes are designed and successfully applied on the presented simulator to imitate ACWs. All the experimental outcomes are carefully analyzed and compared against the biological counterparts. It is demonstrated that the presented simulator can serve as a reliable tool and method to scrutinize digestion and promote novel technologies around the human stomach and the digestion process. This research methodology can also be utilized to develop other biomimetic and bioinspired applications.

2.
Soft Robot ; 10(2): 221-233, 2023 04.
Article in English | MEDLINE | ID: mdl-35704909

ABSTRACT

Soft gastric simulators are the latest gastric models designed to imitate gastrointestinal (GI) functions in actual physiological conditions. They are used in in vitro tests for examining the drug and food behaviors in the GI tract. As the main motility function of the GI tract, the peristalsis can be altered in some gastric disorders, for example, by being delayed or accelerated. To simulate the stomach motility, a GI simulator must achieve a prescribed healthy or pathological peristalsis. This requires the simulator to be controlled in a closed loop. Unlike conventional controllers that stabilize a controlled plant asymptotically, a finite-time controller regulates state variables to their equilibrium points in a predetermined time interval. This article presents the design and implementation of a finite-time, model-based state feedback controller (based on the differential Riccati equation) on a soft robotic gastric simulator's actuators for the first time. We propose a mass-spring-damper model of a ring-shaped soft pneumatic actuator (RiSPA). RiSPA is a bellows-driven, elastomer-based actuator developed to reproduce motility functions of the lower part of the stomach (pyloric antrum). The proposed model is augmented by a new approach for modeling the soft tissues, where the moments of inertia of the system constituents are considered as time-varying functions. The finite-time controller is successfully applied on the RiSPA in numerical simulation and experimental implementation, and the results were thoroughly analyzed and discussed. Its accuracy and the ability to control in a predetermined time are highlighted in the tracking of peristalsis trajectory and contractive regulations.


Subject(s)
Digestion , Musculoskeletal System , Equipment Design , Peristalsis , Stomach
3.
Soft Robot ; 10(3): 504-516, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36346277

ABSTRACT

A human stomach is an organ in the digestive system that breaks down foods by physiological digestion, including mechanical and chemical functions. The mechanical function is controlled by peristaltic waves generated over the stomach body, known as antral contraction waves (ACW). The stomach's physiological digestion is essential to sustain nutrition and health in humans. Replicating the digestion process in a robot provides a test environment as an alternative solution to in vivo testing, which is difficult in practice. Stomach robots made of rigid rods and metal cylinders are unrealistic replicas to contract and expand like biological examples. With soft robotics technology, it is possible to translate biological behavior into an engineering context. Soft robotics introduce potential methods to replicate peristaltic waves and achieve a soft-bodied stomach simulator. This work presents a soft robotic stomach simulator's (SoRSS) concept, design, and experimental validation. A pneumatic bellows actuation for linear elongation and a ring of bellows actuation for circular contraction are proposed first. Multi-ring actuators are then arranged to form an SoRSS that generates ACW and antral contracting pressure (ACP). The SoRSS satisfies the specification of human stomach anatomy and motility and finally undergoes experimental validation using videofluoroscopy with the outcomes presenting the ACW, ACP, and the digestion phases during the actuation process. Those are compared with other medical studies to validate SoRSS functionality.


Subject(s)
Robotics , Humans , Robotics/methods , Biomimetics/methods , Engineering , Stomach
4.
Soft Robot ; 9(4): 807-819, 2022 08.
Article in English | MEDLINE | ID: mdl-34704835

ABSTRACT

Biomimicry of the stomach's peristaltic contractions can be challenging in the design, modeling, and control of a soft actuator. The mimicking of organ contractions advances our knowledge of the digestive system and analyzes the biological behavior by testing with a physical robot. This article proposes a ring-shaped soft pneumatic actuator (RiSPA) as a segment of the digestive tract. RiSPA is made of a ring frame with embedded bellow actuators that generate contractive motions. An embedded sensory system measures the contraction using range sensors. The kinematics and dynamics of RiSPA's contraction are modeled and simulated, while a state feedback algorithm is applied to them. The simulation results are validated experimentally by comparing the RiSPA measurements with desired applied signals. The proposed actuator provides controllable symmetrical and asymmetrical contractions analog to the human stomach. The results of RiSPA validate the prediction performance of the simulation and controller with applied sinusoidal signals as a peristaltic wave. RiSPA contractions can be applied to a broad range of applications, such as imitating the esophagus and intestine contractions.


Subject(s)
Robotics , Biomechanical Phenomena , Computer Simulation , Equipment Design , Humans , Motion , Robotics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...