Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 14(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35631979

ABSTRACT

The musculoskeletal (MS) system consists of bone, cartilage, tendon, ligament, and skeletal muscle, which forms the basic framework of the human body. This system plays a vital role in appropriate body functions, including movement, the protection of internal organs, support, hematopoiesis, and postural stability. Therefore, it is understandable that the damage or loss of MS tissues significantly reduces the quality of life and limits mobility. Tissue engineering and its applications in the healthcare industry have been rapidly growing over the past few decades. Tissue engineering has made significant contributions toward developing new therapeutic strategies for the treatment of MS defects and relevant disease. Among various biomaterials used for tissue engineering, natural polymers offer superior properties that promote optimal cell interaction and desired biological function. Natural polymers have similarity with the native ECM, including enzymatic degradation, bio-resorb and non-toxic degradation products, ability to conjugate with various agents, and high chemical versatility, biocompatibility, and bioactivity that promote optimal cell interaction and desired biological functions. This review summarizes recent advances in applying natural-based scaffolds for musculoskeletal tissue engineering.

2.
Carbohydr Polym ; 269: 118311, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34294325

ABSTRACT

Low mechanical strength and untargeted osteoinduction of chitosan hydrogel limit its application for bone regeneration. This study aimed to develop an injectable chitosan hydrogel with enhanced mechanical strength and improved osteoinductivity for bone tissue engineering. For this purpose, chitosan-modified halloysite nanotubes (mHNTs) were synthesized first. Then, icariin as a bone inducer was loaded into mHNTs (IC@mHNTs), resulting in a sustained drug release system. Further, nanocomposite chitosan/mHNTs hydrogels were prepared by the sol-gel transition, leading to decreased gelation time and temperature and enhanced mechanical strength of the resulting scaffolds. The mesenchymal stem cells were encapsulated into the hydrogels, and in vitro viability assays showed scaffold biocompatibility. Moreover, embedded mHNTs or IC@mHNTs in the scaffold resulted in enhanced proliferation and bone differentiation of encapsulated cells. It was collectively demonstrated that the injectable in situ forming nanocomposite chitosan hydrogel loaded with IC@mHNTs is a promising candidate for bone regeneration.


Subject(s)
Chitosan/chemistry , Clay/chemistry , Hydrogels/chemistry , Nanotubes/chemistry , Osteogenesis/drug effects , Tissue Scaffolds/chemistry , Cell Differentiation/drug effects , Drug Delivery Systems , Drug Liberation , Flavonoids/pharmacology , Humans , Mesenchymal Stem Cells/drug effects , Nanocomposites/chemistry , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL