Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 25(9): 104810, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36034223

ABSTRACT

[This corrects the article DOI: 10.1016/j.isci.2022.104667.].

2.
iScience ; 25(7): 104667, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35860762

ABSTRACT

The heart pumps blood into circulation against vascular resistance and actively regulates the contractile force to compensate for mechanical load changes. Our experimental data show that cardiomyocytes have a mechano-chemo-transduction (MCT) mechanism that increases intracellular Ca 2 + transient to enhance contractility in response to increased mechanical load. This study advances the cardiac excitation- Ca 2 + signaling-contraction (E-C) coupling model on conceptual and technical fronts. First, we developed analytical and computational models to perform 3-dimensional mechanical analysis of cardiomyocytes contracting in a viscoelastic medium under mechanical load. Next, we proposed an MCT feedback loop in the E-C coupling dynamic system to shift the feedforward paradigm of cardiac E-C coupling to an autoregulation model. Our combined modeling and experimental studies reveal that MCT enables autoregulation of E-C coupling and contractility in single cardiomyocytes, which underlies the heart's intrinsic autoregulation in compensatory response to load changes in order to maintain the stroke volume and cardiac output.

3.
Int J Eng Sci ; 1652021 Aug 01.
Article in English | MEDLINE | ID: mdl-34629507

ABSTRACT

We develop a viscoelastic generalization of the elastic Eshelby inclusion solution, where the inclusion and surrounding matrix are two different viscoelastic solids and the inclusion's eigenstrain is a time-periodic oscillatory input. The solution exploits the Correspondence Principle of Linear Viscoelasticity and a Discrete Fourier Transform to efficiently capture the steady-state oscillatory behavior of the 3-D mechanical fields. The approach is illustrated here in the context of the recently-developed in vitro Cell-in-Gel system, where an isolated live cardiomyocyte (the inclusion) is paced to contract periodically within a soft hydrogel (the matrix), for the purpose of studying the effect of mechanical load on biochemical signals that regulate contractility. The addition of viscoelasticity improves the fidelity of our previous elastic Eshelby inclusion analysis of the Cell-in-Gel system by accounting for the time-varying fields and the resulting hysteresis and dissipated mechanical energy. This mathematical model is used to study the parametric sensitivities of the relative stiffness of the inclusion, the inclusion's aspect ratio (slenderness), and the cross-link density of the hydrogel matrix.

4.
Life (Basel) ; 11(6)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072584

ABSTRACT

The heart has two intrinsic mechanisms to enhance contractile strength that compensate for increased mechanical load to help maintain cardiac output. When vascular resistance increases the ventricular chamber initially expands causing an immediate length-dependent increase of contraction force via the Frank-Starling mechanism. Additionally, the stress-dependent Anrep effect slowly increases contraction force that results in the recovery of the chamber volume towards its initial state. The Anrep effect poses a paradox: how can the cardiomyocyte maintain higher contractility even after the cell length has recovered its initial length? Here we propose a surface mechanosensor model that enables the cardiomyocyte to sense different mechanical stresses at the same mechanical strain. The cell-surface mechanosensor is coupled to a mechano-chemo-transduction feedback mechanism involving three elements: surface mechanosensor strain, intracellular Ca2+ transient, and cell strain. We show that in this simple yet general system, contractility autoregulation naturally emerges, enabling the cardiomyocyte to maintain contraction amplitude despite changes in a range of afterloads. These nontrivial model predictions have been experimentally confirmed. Hence, this model provides a new conceptual framework for understanding the contractility autoregulation in cardiomyocytes, which contributes to the heart's intrinsic adaptivity to mechanical load changes in health and diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...