Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 669, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33436800

ABSTRACT

We delineate the four principal surface plasmon polariton coupling and interaction mechanisms in subwavelength gratings, and demonstrate their significant roles in shaping the optical response of plasmonic gratings. Within the framework of width-graded metal-insulator-metal nano-gratings, electromagnetic field confinement and wave guiding result in multiwavelength light localization provided conditions of adiabatic mode transformation are satisfied. The field is enhanced further through fine tuning of the groove-width (w), groove-depth (L) and groove-to-groove-separation (d). By juxtaposing the resonance modes of width-graded and non-graded gratings and defining the adiabaticity condition, we demonstrate the criticality of w and d in achieving adiabatic mode transformation among the grooves. We observe that the resonant wavelength of a graded grating corresponds to the properties of a single groove when the grooves are adiabatically coupled. We show that L plays an important function in defining the span of localized wavelengths. Specifically, we show that multiwavelength resonant modes with intensity enhancement exceeding three orders of magnitude are possible with w < 30 nm and 300 nm < d < 900 nm for a range of fixed values of L. This study presents a novel paradigm of deep-subwavelength adiabatically-coupled width-graded gratings-illustrating its versatility in design, hence its viability for applications ranging from surface enhanced Raman spectroscopy to multispectral imaging.

2.
Opt Express ; 21(21): 25271-6, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24150367

ABSTRACT

Finite-Difference Time-Domain (FDTD) calculations are used to characterize the electric field in the vicinity of a sharp silver or gold cone with an apex diameter of 10 nm. The simulations are utilized to predict the intensity and the distribution of the locally enhanced electric field in tip-enhanced Raman spectroscopy (TERS). A side-by-side comparison of the enhanced electric field induced by a radially and a linearly polarized light in both gap-mode and conventional TERS setup is performed. For this purpose, a radially polarized source is introduced and integrated into the FDTD modeling. Additionally, the optical effect of a thin protective layer of alumina on the enhancement of the electric field is investigated.

3.
Sensors (Basel) ; 13(10): 12744-59, 2013 Sep 25.
Article in English | MEDLINE | ID: mdl-24072021

ABSTRACT

Tip-enhanced Raman spectroscopy (TERS) is used to investigate the influence of strains in isolated and overlapping silicon nanowires prepared by chemical etching of a (100) silicon wafer. An atomic force microscopy tip made of nanocrystalline diamond coated with a thin layer of silver is used in conjunction with an excitation wavelength of 532 nm in order to probe the first order optical phonon mode of the [100] silicon nanowires. The frequency shift and the broadening of the silicon first order phonon are analyzed and compared to the topographical measurements for distinct configuration of nanowires that are disposed in straight, bent or overlapping configuration over a microscope coverslip. The TERS spatial resolution is close to the topography provided by the nanocrystalline diamond tip and subtle spectral changes are observed for different nanowire configurations.


Subject(s)
Microscopy, Atomic Force/instrumentation , Nanotechnology/instrumentation , Nanowires/chemistry , Nanowires/ultrastructure , Silicon/chemistry , Spectrum Analysis, Raman/instrumentation , Transducers , Compressive Strength , Elastic Modulus , Equipment Design , Equipment Failure Analysis , Particle Size , Stress, Mechanical , Surface Properties , Tensile Strength
4.
J Am Chem Soc ; 134(41): 17076-82, 2012 Oct 17.
Article in English | MEDLINE | ID: mdl-22991940

ABSTRACT

In the ectopic biomineralization of calcium oxalate kidney stones, the competition between calcium oxalate monohydrate (COM) formation and its inhibition by the phosphoprotein osteopontin (OPN) plays a key role in COM stone-forming processes. To get more insights into these processes, tip-enhanced Raman spectroscopy (TERS) was used to provide surface-specific information about the adsorption of OPN to faces of COM crystals. In TERS, the surface plasmon resonance of a metallic AFM tip is locally excited when the tip is placed in the optical near-field of a laser focused on the crystal surface. Excitation of this localized surface plasmon resonance allows the enhancement of the Raman signal as well as the improvement of the spatial resolution beyond the diffraction limit of the light. As TERS works label free and noninvasively, it is an excellent technique to study the distribution of adsorbed proteins on crystal faces at the submicrometer scale. In the present work, we generated Raman intensity maps indicating high spatial resolution and a distinct variation in relative peak intensities. The collected TERS spectra show that the OPN preferentially adsorbs to edges and faces at the ends of COM crystals (order: {100}/{121} edge > {100} face > {100}/{010} edge ≈ {121}/{010} edge > {010} face) providing also relevant information on the inhibition of crystal growth. This study demonstrates that TERS is an excellent technique for detailed investigations of biomolecules adsorbed, layered, or assembled to a large variety of surfaces and interfaces.


Subject(s)
Calcium Oxalate/chemistry , Osteopontin/chemistry , Adsorption , Crystallization , Spectrum Analysis, Raman , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...