Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Mol Cell Biochem ; 478(11): 2435-2444, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36807844

ABSTRACT

Vimentin is a main type 3 intermediate filament protein. It seems that abnormal expression of vimentin is contributed to the appearance of the aggressive feature of cancer cells. So that it has been reported that malignancy and epithelial-mesenchymal transition in solid tumors, and poor clinical outcomes in patients with lymphocytic leukemia and acute myelocytic leukemia have been associated with the high expression of vimentin. Vimentin is a non-caspase substrate of caspase-9 although its cleavage by caspase-9 in biological processes has not been reported. In the present study, we sought to understand whether vimentin cleavage mediated by caspase-9 could reverse the malignancy in leukemic cells. Herein, to address the issue, we investigated vimentin changes in differentiation and took advantage of the inducible caspase-9 (iC9)/AP1903 system in human leukemic NB4 cells. Following the transfection and treatment of the cells using the iC9/AP1903 system, vimentin expression, cleavage, and subsequently, the cell invasion and the relevant markers such as CD44 and MMP-9 were evaluated. Our results revealed the downregulation and cleavage of vimentin which attenuates the malignant phenotype of the NB4 cells. Considering the favorable effect of this strategy in keeping down the malignant features of the leukemic cells, the effect of the iC9/AP1903 system in combination with all-trans-retinoic acid (ATRA) treatment was evaluated. The obtained data prove that iC9/AP1903 significantly makes the leukemic cells more sensitive to ATRA.


Subject(s)
Antineoplastic Agents , Leukemia, Promyelocytic, Acute , Humans , Antineoplastic Agents/pharmacology , Caspase 9/metabolism , Cell Differentiation , Intermediate Filaments/metabolism , Intermediate Filaments/pathology , Leukemia, Promyelocytic, Acute/drug therapy , Organic Chemicals , Tretinoin/pharmacology , Tumor Cells, Cultured , Vimentin/metabolism
3.
J Photochem Photobiol B ; 225: 112347, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34736068

ABSTRACT

Protoporphyrin IX (PpIX) is produced in the mitochondria and used as fluorescent contrast agent or photosensitizer after exogenous 5-aminolevulinic acid (ALA) delivery in cancer photodynamic detection and therapy (PDT). Although routinely used in the clinics, the stimulated production of PpIX is often insufficient and/or heterogeneous within the lesions, thereby limiting the PDT performances. Since photobiomodulation, which is based on the illumination of the tissues with sub-thermal radiometric conditions in the red or near-infrared, is known to stimulate the cell metabolism, we have optimized these conditions in vitro. Some of them lead to the homogenization and strong stimulation of the PpIX endogenous production. Interestingly, combined sequentially, PBM enhanced significantly the potency of PpIX-based PDT in vitro and in vivo in tumors grown on the chicken embryo chorioallantoic membrane. These results are in excellent agreement with other assays based on measurements of the cell survival/death, the production of reactive oxygen species, including singlet oxygen, and the mitochondrial membrane potential.


Subject(s)
Photochemotherapy , Photosensitizing Agents/therapeutic use , Protoporphyrins/biosynthesis , Animals , Cell Line, Tumor , Chickens , Humans , Membrane Potential, Mitochondrial , Optical Imaging , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...