Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neuroimaging ; 2: 1097523, 2023.
Article in English | MEDLINE | ID: mdl-37554628

ABSTRACT

Schizophrenia is a severe brain disorder with serious symptoms including delusions, disorganized speech, and hallucinations that can have a long-term detrimental impact on different aspects of a patient's life. It is still unclear what the main cause of schizophrenia is, but a combination of altered brain connectivity and structure may play a role. Neuroimaging data has been useful in characterizing schizophrenia, but there has been very little work focused on voxel-wise changes in multiple brain networks over time, despite evidence that functional networks exhibit complex spatiotemporal changes over time within individual subjects. Recent studies have primarily focused on static (average) features of functional data or on temporal variations between fixed networks; however, such approaches are not able to capture multiple overlapping networks which change at the voxel level. In this work, we employ a deep residual convolutional neural network (CNN) model to extract 53 different spatiotemporal networks each of which captures dynamism within various domains including subcortical, cerebellar, visual, sensori-motor, auditory, cognitive control, and default mode. We apply this approach to study spatiotemporal brain dynamism at the voxel level within multiple functional networks extracted from a large functional magnetic resonance imaging (fMRI) dataset of individuals with schizophrenia (N = 708) and controls (N = 510). Our analysis reveals widespread group level differences across multiple networks and spatiotemporal features including voxel-wise variability, magnitude, and temporal functional network connectivity in widespread regions expected to be impacted by the disorder. We compare with typical average spatial amplitude and show highly structured and neuroanatomically relevant results are missed if one does not consider the voxel-wise spatial dynamics. Importantly, our approach can summarize static, temporal dynamic, spatial dynamic, and spatiotemporal dynamics features, thus proving a powerful approach to unify and compare these various perspectives. In sum, we show the proposed approach highlights the importance of accounting for both temporal and spatial dynamism in whole brain neuroimaging data generally, shows a high-level of sensitivity to schizophrenia highlighting global but spatially unique dynamics showing group differences, and may be especially important in studies focused on the development of brain-based biomarkers.

2.
J Neurosci Methods ; 369: 109478, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35031344

ABSTRACT

OBJECTIVE: Brain parcellation is an essential aspect of computational neuroimaging research and deals with segmenting the brain into (possibly overlapping) sub-regions employed to study brain anatomy or function. In the context of functional parcellation, brain organization which is often measured via temporal metrics such as coherence, is highly dynamic. This dynamic aspect is ignored in most research, which typically applies anatomically based, fixed regions for each individual, and can produce misleading results. METHODS: In this work, we propose a novel spatio-temporal-network (5D) brain parcellation scheme utilizing a deep residual network to predict the probability of each voxel belonging to a brain network at each point in time. RESULTS: We trained 53 4D brain networks and evaluate the ability of these networks to capture spatial and temporal dynamics as well as to show sensitivity to individual or group-level variation (in our case with age). CONCLUSION: The proposed system generates informative spatio-temporal networks that vary not only across individuals but also over time and space. SIGNIFICANCE: The dynamic 5D nature of the developed approach provides a powerful framework that expands on existing work and has potential to identify novel and typically ignored findings when studying the healthy and disordered brain.


Subject(s)
Connectome , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain Mapping/methods , Connectome/methods , Humans , Magnetic Resonance Imaging/methods , Neuroimaging , Rest
SELECTION OF CITATIONS
SEARCH DETAIL
...